3.以曲线上的点为切点的切线方程是 查看更多

 

题目列表(包括答案和解析)

 以曲线上的点(1,-1)为切点的切线方程是

    A.         B.

    C.        D.

 

查看答案和解析>>

(本小题满分12分)已知函数

(I)求以曲线上的点为切点的切线方程;

(Ⅱ)当时,讨论函数的单调性;

(Ⅲ)如果函数的图象与函数的图象有四个不同的交点,求实数的取值范围.

查看答案和解析>>

已知函数

(I)求以曲线上的点为切点的切线方程;

(Ⅱ)当时,讨论函数的单调性;

(Ⅲ)如果函数的图象与函数的图象有四个不同的交点,求实数的取值范围.

查看答案和解析>>

设函数f(x)=
x33
-x2-3x-3a,(a大于0)
.(1)如果a=1,点p为曲线y=f(x)上一个动点,求以P为切点的切线其斜率取最小值时的切线方程;
(2)若x∈[a,3a]时,f(x)≥0恒成立,求a的取值范围.

查看答案和解析>>

(考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评阅记分)
A.(不等式选做题)不等式|
x+1
x-1
|≥1
的解集是
(-∞,0]
(-∞,0]

B.(几何证明选做题) 如图,以AB=4为直径的圆与△ABC的两边分别交于E,F两点,∠ACB=60°,则EF=
2
2

C.(坐标系与参数方程选做题) 在极坐标中,已知点P为方程ρ(cosθ+sinθ)=1所表示的曲线上一动点,Q(2,
π
3
),则|PQ|的最小值为
6
2
6
2

查看答案和解析>>

 

一、选择题(共60分)

1―6DDBBAC  7―12DABCAC

二、填空题:(本大题共5小题,每小题5分,共20分)

13.3

14.

15.

16.240

三、解答题:本大题有6小题,共70分,解答应写出文字说明,证明过程或演算步骤。

17.解:(1)

          1分

      

          5分

   (2)

          7分

       由余弦定理   9分

           10分

18.(1)记“这名考生通过书面测试”为事件A,则这名考生至少正确做出3道题,即正确做出3道题或4道题,

       故   4分

   (2)由题意得的所有可能取值分别是0,1,2,3,4,且

 

      

      

          8分

      

       的分布列为:

      

0

1

2

3

4

P

          10分

          12分

19.解法一:(1)在直平行六面体ABCD―A1B1C1D1中,

      

       又

          4分

       又

   (2)如图,连B1C,则

       易证

       中点,

      

          8分

       取CD中点M,连BM, 则平面CC1D1D,

       作于N,连NB,由三垂线定理知:

       是二面角B―DE―C的平面角     10分

       在

      

       则二面角B―DE―C的大小为    12分

       解法二:(1)以D为坐标原点,射线DA为轴,建立如图所示坐标为

       依题设

      

      

       又

       平面BDE    6分

       8分

       由(1)知平面BDE的一个法向量为

       取DC中点M,则

      

      

       等于二面角B―DE―C的平面角    10分

          12分

20.解:(1)由已知得   2分

       由

      

       递减

       在区间[-1,1]上的最大值为   4分

       又

      

       由题意得

       故为所求         6分

   (2)解:

      

           8分

       二次函数的判别式为:

      

       令

       令    10分

      

       为单调递增,极值点个数为0    11分

       当=0有两个不相等的实数根,根据极值点的定义,可知函数有两个极值点    12分

21.解:(1)设

       化简得    3分

   (2)将    4分

       法一:两点不可能关于轴对称,

       的斜率必存在

       设直线DE的方程为

       由   5分

           6分

          7分

       且

          8分

       将代化入简得

          9分

       将

       过定点(-1,-2)    10分

       将

       过定点(1,2)即为A点,舍去     11分

           12分

       法二:设    (5分)

       则   6分

       同理

       由已知得   7分

       设直线DE的方程为

       得   9分

          10分

       即直线DE过定点(-1,-2)    12分

22.解:(1)由    2分

       于是

       即    3分

       有   5分

          6分

   (2)由(1)得    7分

       而

      

               

           10分

       当

       于是

       故命题得证     12分