判断与的大小.并证明你的结论. 安徽省蚌埠市2009届高三年级第一次教学质量检查考试 查看更多

 

题目列表(包括答案和解析)

已知数列{an}是等比数列,a1=2,a3=18;数列{bn}是等差数列,b1=2,b1+b2+b3+b4=a1+a2+a3>20,
(Ⅰ)求数列{bn}的通项公式;
(Ⅱ)求数列{bn}的前n项和Sn
(Ⅲ)设Pn=b1+b4+b7+…+b3n-2,Qn=b10+b12+b14+…+b2n+8(n∈N*),比较Pn与Qn大小,并证明你的结论。

查看答案和解析>>

函数y=ex(e为自然对数的底数)的图象向下平移b(0<b,b≠1)个单位后得到的图象记为Cb,Cb与x轴交于Ab点,与y轴交于Bb点,O为坐标原点
(1)写出Cb的解析式和Ab,Bb两点的坐标
(2)判断线段OAb,OBb长度大小,并证明你的结论
(3)是否存在两个互不相等且都不等于1的正实数m,n,使得Rt△OAmBm与Rt△OAnBn相似,如果相似,能否全等?证明你的结论.

查看答案和解析>>

已知f(x)=2x-
1
2
x2,g(x)=logax(a>0且a≠1),h(x)=f(x)-g(x)在定义域上为减函数,且其导函数h(x)存在零点.
(I)求实数a的值;
(II)函数y=p(x)的图象与函数y=g(x)的图象关于直线y=x对称,且y=p(x)为函数y=p(x)的导函数,A(x1,y1),B(x2,y2),(x1<x2)是函数y=p(x)图象上两点,若p(x0)=
y1-y2
x1-x2
,判断P(x0),,P(x1),P(x2)的大小,并证明你的结论.

查看答案和解析>>

已知a>0,b>0,判断a3+b3与a2b+ab2的大小,并证明你的结论.

查看答案和解析>>

已知点B1(1,y1),B2(2,y2),…,Bn(n,yn)(n∈N*)在直线y=
1
2
x+1
上,点A1(x1,0),A2(x2,0),A3(x3,0),…,An(xn,0)顺次为x轴上的点,其中x1=a(0<a<1),对于任意n∈N*,点An,Bn,An+1构成以∠Bn为顶角的等腰三角形,设△AnBnAn+1的面积为Sn
(1)证明:数列{yn}是等差数列;
(2)求S2n-1(用a和n的代数式表示);
(3)设数列{
1
S2n-1S2n
}
前n项和为Tn,判断Tn
8n
3n+4
(n∈N*)的大小,并证明你的结论.

查看答案和解析>>

一、选择题:

题号

1

2

3

4

5

6

7

8

9

10

11

12

答案

A

D

C

D

C

A

B

C

B

D

B

C

二、填空题:

13、    14、8    15、等;  16、7

三、解答题

17、(1)由余弦定理:   又

    ∴

(2)∵A+B+C=   ∴

18、(1)周销售量为2吨,3吨,4吨的频率分别为0.2,0.5,和0.3。

(2)可能的值为8,10,12,14,16

     

8

10

12

14

16

P

0.04

0.2

0.37

0.3

0.09

的分布列为

 

 

(千元)

19、(1)AC=1,BC=2 ,AB= ,∴∴AC

又  平面PAC平面ABC,平面PAC平面ABC=AC,∴BC平面PAC

又∵PA平面APC     ∴

(2)该几何体的主试图如下:

 

几何体主试图的面积为

     ∴   ∴

 

 

(3)取PC 的中点N,连接AN,由△PAC是边长为1的正三角形,可知

由(1)BC平面PAC,可知   ∴平面PCBM

20、(1)要使得不等式能成立,只需

  ∴

,故实数m的最小值为1

(2)由

   ∵,列表如下:

x

0

(0,1)

1

(1,2)

2

 

0

 

1

减函数

增函数

3-2ln3

21、(1)曲线C的方程为

(2),存在点M(―1,2)满足题意

22、(1)由于点B1(1,y1),B2(2,y2),…,Bn(n,yn)()在直线

  因此,所以是等差数列

(2)由已知有  同理 

   

  

(3)由(2)得,则

由于  而

,从而

同理:……

以上个不等式相加得:

,从而

 

 

 

 


同步练习册答案