A. B. 查看更多

 

题目列表(包括答案和解析)

在△ABC中,角A,B,C所对的边分别为a,b,c,且1+
tanA
tanB
=
2c
b

(1)求角A.
(2)若
m
=(0,-1)
n
=(cosB,2cos2
C
2
)
,试求|
m
+
n
|的最小值.

查看答案和解析>>

已知函数g(x)=ax2-2ax+1+b(a≠0,b<1),在区间[2,3]上有最大值4,最小值1,设f(x)=
g(x)
x

(Ⅰ)求a,b的值;
(Ⅱ)不等式f(2x)-k•2x≥0在x∈[-1,1]上恒成立,求实数k的范围;
(Ⅲ)方程f(|2x-1|)+k(
2
|2x-1|
-3)=0
有三个不同的实数解,求实数k的范围.

查看答案和解析>>

4、函数y=log2(1-x)的图象是(  )

查看答案和解析>>

11、已知A,B均为集合U={1,3,5,7,9}的子集,且A∩B={3},CUB∩A={9},则A=(  )

查看答案和解析>>

20、设集合A={x||x-a|<1,x∈R},B={x||x-b|>2,x∈R}.若A⊆B,则实数a,b必满足(  )

查看答案和解析>>

一、选择题:

题号

1

2

3

4

5

6

7

8

9

10

11

12

答案

A

D

A

D

C

A

D

C

B

D

B

C

二、填空题:

13、    14、   15、等;  16、7

三、解答题

17、(1)由余弦定理:   又

    ∴

(2)∵A+B+C=   ∴

18、(1)  (2)

19、(1)AC=1,BC=2 ,AB= ,∴∴AC

又  平面PAC平面ABC,平面PAC平面ABC=AC,∴BC平面PAC

又∵PA平面APC     ∴

(2)该几何体的主试图如下:

 

几何体主试图的面积为

     ∴   ∴

 

 

(3)取PC 的中点N,连接AN,由△PAC是边长为1的正三角形,可知

由(1)BC平面PAC,可知   ∴平面PCBM

20、(1)的最小值为

(2)a的取值范围是

21、(1)曲线C的方程为

(2),存在点M(―1,2)满足题意

22、(1)由于点B1(1,y1),B2(2,y2),…,Bn(n,yn)()在直线

  因此,所以是等差数列

(2)由已知有  同理 

   

  

(3)由(2)得,则

由于  而

,从而

同理:……

以上个不等式相加得:

,从而

 

 

 

 


同步练习册答案