13.在( x ? 1 ) ( x + 1 )5的展开式中x4的系数是 查看更多

 

题目列表(包括答案和解析)

已知函数g(x)=ax2-2ax+1+b(a≠0,b<1),在区间[2,3]上有最大值4,最小值1,设f(x)=
g(x)
x

(Ⅰ)求a,b的值;
(Ⅱ)不等式f(2x)-k•2x≥0在x∈[-1,1]上恒成立,求实数k的范围;
(Ⅲ)方程f(|2x-1|)+k(
2
|2x-1|
-3)=0
有三个不同的实数解,求实数k的范围.

查看答案和解析>>

某加工厂需要定期购买原材料,已知每公斤材料的价格为1.5元,每次购买原材料需支付运费600元、每公斤原材料每天的保管费用为0.03元,该厂每天需要消耗原材料400公斤,每次购买的原材料当天即开始使用(即有400公斤不需要保管).
(1)设该厂每x天购买一次原材料,试写出每次购买的原材料在x天内总的保管费用y1关于x的函数关系式;
(2)求该厂多少天购买一次原材料才能使平均每天支付的总费用y最少,并求出这个最少(小)值.

查看答案和解析>>

设f(x)=log
1
2
(
1-ax
x-1
)
为奇函数,a为常数,
(Ⅰ)求a的值;
(Ⅱ)证明:f(x)在(1,+∞)内单调递增;
(Ⅲ)若对于[3,4]上的每一个x的值,不等式f(x)>(
1
2
)x
+m恒成立,求实数m的取值范围.

查看答案和解析>>

已知函数f(x),g(x)满足f(1)=1,f′(1)=1,g(1)=2,g′(1)=1,则函数F(x)=
f(x)-2g(x)
的图象在x=1处的切线方程为
 

查看答案和解析>>

已知曲线y=
16
x2-1与y=1+x3在x=x0处的切线互相垂直,求x0的值.

查看答案和解析>>

一、

C A CBC     A D AB D     B A

二、

13.5;   14.;     15. 36;      16.20

三、

17.解:(1)依题意得:

所以:,……4分

20090508

(2)设,则

由正弦定理:,

所以两个正三角形的面积和,…………8分

……………10分

所以:………………………………………………………………12分

18.解:(1);……………………6分

(2)消费总额为1500元的概率是:……………………7分

消费总额为1400元的概率是:………8分

消费总额为1300元的概率是:

,…11分

所以消费总额大于或等于1300元的概率是;……………………12分

19.(1)证明:因为,所以平面

又因为

平面

平面平面;…………………4分

(2)因为,所以平面,所以点到平面的距离等于点E到平面的距离,

过点E作EF垂直CD且交于点F,因为平面平面,所以平面

所以的长为所求,………………………………………………………………………6分

因为,所以为二面角的平面角,

=1,

到平面的距离等于1;…………………………………………………………8分

(3)连接,由平面,得到

所以是二面角的平面角,

,…………………………………………………………………11分

二面角大小是。……12分

20.解:(1)设等差数列的公差为,依题意得:

解得,所以,…………………3分

所以

所以;…………………………………………………………………6分

(2),因为,所以数列是递增数列,…8分

当且仅当时,取得最小值,

则:

所以,即的取值范围是。………………………………………12分

21.解:(1)设点的坐标为,则点的坐标为,点的坐标为

因为,所以,得到:,注意到不共线,所以轨迹方程为;…………………………………5分

(2)设点是轨迹C上的任意一点,则以为直径的圆的圆心为

假设满足条件的直线存在,设其方程为,直线被圆截得的弦为

 

…………………………………………7分

弦长为定值,则,即

此时,……………………………………………………9分

所以当时,存在直线,截得的弦长为

    当时,不存在满足条件的直线。……………………………………………12分

22.解:(1)

,……2分

因为当时取得极大值,所以

所以的取值范围是:;………………………………………………………4分

(2)由下表:

0

0

递增

极大值

递减

极小值

递增

………………………7分

画出的简图:

依题意得:

解得:

所以函数的解析式是:

;……9分

(3)对任意的实数都有

依题意有:函数在区间

上的最大值与最小值的差不大于

………10分

在区间上有:

,

的最大值是

的最小值是,……13分

所以

的最小值是。………………………………………14分