200元300元400元500元老年 查看更多

 

题目列表(包括答案和解析)

我省城乡居民社会养老保险个人年缴费分100,200,300,400,500,600,700,800,900,1000(单位元)十个档次,某社区随机抽取了50名村民,按缴费在100~500元,600~1000元,以及年龄在20~39岁,40~59岁之间进行了统计,相关数据如下:

(1)用分层抽样的方法在缴费100~500元之间的村民中随机抽取5人,则年龄在20~39岁之间应抽取几人?
(2)在(1)的条件下抽取的5人中,随机选取2人进行到户走访,求这2人的年龄都在40~59岁之间的概率.
(3)能否有95%的把握认为缴费的档次与年龄有关?

查看答案和解析>>

我省城乡居民社会养老保险个人年缴费分100,200,300,400,500,600,700,800,900,1000(单位元)十个档次,某社区随机抽取了50名村民,按缴费在100~500元,600~1000元,以及年龄在20~39岁,40~59岁之间进行了统计,相关数据如下:
(1)用分层抽样的方法在缴费100~500元之间的村民中随机抽取5人,则年龄在20~39岁之间应抽取几人?
(2)在(1)的条件下抽取的5人中,随机选取2人进行到户走访,求这2人的年龄都在40~59岁之间的概率.
(3)能否有95%的把握认为缴费的档次与年龄有关?

查看答案和解析>>

我省城乡居民社会养老保险个人年缴费分100,200,300,400,500,600,700,800,900,1000(单位元)十个档次,某社区随机抽取了50名村民,按缴费在100~500元,600~1000元,以及年龄在20~39岁,40~59岁之间进行了统计,相关数据如下:

(1)用分层抽样的方法在缴费100~500元之间的村民中随机抽取5人,则年龄在20~39岁之间应抽取几人?
(2)在(1)的条件下抽取的5人中,随机选取2人进行到户走访,求这2人的年龄都在40~59岁之间的概率.
(3)能否有95%的把握认为缴费的档次与年龄有关?

查看答案和解析>>

我省城乡居民社会养老保险个人年缴费分100,200,300,400,500,600,700,800,900,1000(单位元)十个档次,某社区随机抽取了50名村民,按缴费在100~500元,600~1000元,以及年龄在20~39岁,40~59岁之间进行了统计,相关数据如下:

(1)用分层抽样的方法在缴费100~500元之间的村民中随机抽取5人,则年龄在20~39岁之间应抽取几人?
(2)在(1)的条件下抽取的5人中,随机选取2人进行到户走访,求这2人的年龄都在40~59岁之间的概率.
(3)能否有95%的把握认为缴费的档次与年龄有关?

查看答案和解析>>

(2008•普陀区二模)经济学中有一个用来权衡企业生产能力(简称“产能”)的模型,称为“产能边界”.它表示一个企业在产能最大化的条件下,在一定时期内所能生产的几种产品产量的各种可能的组合.例如,某企业在产能最大化条件下,一定时期内能生产A产品x台和B产品y台,则它们之间形成的函数y=f(x)就是该企业的“产能边界函数”.现假设该企业的“产能边界函数”为y=15
1600-2x
(如图).
(1)试分析该企业的产能边界,分别选用①、②、③中的一个序号填写下表:
点Pi(x,y)对应的产量组合 实际意义
P1(350,450)
P2(200,300)
P3(500,400)
P4(408,420)
①这是一种产能未能充分利用的产量组合;
②这是一种生产目标脱离产能实际的产量组合;
③这是一种使产能最大化的产量组合.
(2)假设A产品每台利润为a(a>0)元,B产品每台利润为A产品每台利润的2倍.在该企业的产能边界条件下,试为该企业决策,应生产A产品和B产品各多少台才能使企业从中获得最大利润?

查看答案和解析>>

一、

C A CBC     A D AB D     B A

二、

13.5;   14.;     15. 36;      16.20

三、

17.解:(1)依题意得:

所以:,……4分

20090508

(2)设,则

由正弦定理:,

所以两个正三角形的面积和,…………8分

……………10分

所以:………………………………………………………………12分

18.解:(1);……………………6分

(2)消费总额为1500元的概率是:……………………7分

消费总额为1400元的概率是:………8分

消费总额为1300元的概率是:

,…11分

所以消费总额大于或等于1300元的概率是;……………………12分

19.(1)证明:因为,所以平面

又因为

平面

平面平面;…………………4分

(2)因为,所以平面,所以点到平面的距离等于点E到平面的距离,

过点E作EF垂直CD且交于点F,因为平面平面,所以平面

所以的长为所求,………………………………………………………………………6分

因为,所以为二面角的平面角,

=1,

到平面的距离等于1;…………………………………………………………8分

(3)连接,由平面,得到

所以是二面角的平面角,

,…………………………………………………………………11分

二面角大小是。……12分

20.解:(1)设等差数列的公差为,依题意得:

解得,所以,…………………3分

所以

所以;…………………………………………………………………6分

(2),因为,所以数列是递增数列,…8分

当且仅当时,取得最小值,

则:

所以,即的取值范围是。………………………………………12分

21.解:(1)设点的坐标为,则点的坐标为,点的坐标为

因为,所以,得到:,注意到不共线,所以轨迹方程为;…………………………………5分

(2)设点是轨迹C上的任意一点,则以为直径的圆的圆心为

假设满足条件的直线存在,设其方程为,直线被圆截得的弦为

 

…………………………………………7分

弦长为定值,则,即

此时,……………………………………………………9分

所以当时,存在直线,截得的弦长为

    当时,不存在满足条件的直线。……………………………………………12分

22.解:(1)

,……2分

因为当时取得极大值,所以

所以的取值范围是:;………………………………………………………4分

(2)由下表:

0

0

递增

极大值

递减

极小值

递增

………………………7分

画出的简图:

依题意得:

解得:

所以函数的解析式是:

;……9分

(3)对任意的实数都有

依题意有:函数在区间

上的最大值与最小值的差不大于

………10分

在区间上有:

,

的最大值是

的最小值是,……13分

所以

的最小值是。………………………………………14分