0.1中年 查看更多

 

题目列表(包括答案和解析)

18、为应对金融危机,刺激消费,某市给市民发放面额为100元的旅游消费卷,由抽样调查预计老、中、青三类市民持有这种消费卷到某旅游景点消费额及其概率如下表:
200元 300元 400元 500元
老年 0.4 0.3 0.2 0.1
中年 0.3 0.4 0.2 0.1
青年 0.3 0.3 0.2 0.2
某天恰好有持有这种消费卷的老年人、中年人、青年人各一人到该旅游景点,
(1)求这三人恰有两人消费额不少于300元的概率;
(2)求这三人消费总额大于或等于1300元的概率.

查看答案和解析>>

为应对金融危机,刺激消费,某市给市民发放面额为100元的旅游消费卷,由抽样调查预计老、中、青三类市民持有这种消费卷到某旅游景点消费额及其概率如下表:
200元 300元 400元 500元
老年 0.4 0.3 0.2 0.1
中年 0.3 0.4 0.2 0.1
青年 0.3 0.3 0.2 0.2
某天恰好有持有这种消费卷的老年人、中年人、青年人各一人到该旅游景点,
(1)求这三人恰有两人消费额大于300元的概率;
(2)求这三人消费总额大于或等于1300元的概率;
(3)设这三人中消费额大于300元的人数为ξ,求ξ的分布列及ξ的数学期望.

查看答案和解析>>

(本小题满分12分)为应对金融危机,刺激消费,某市给市民发放面额为100元的旅游消费卷,由抽样调查预计老、中、青三类市民持有这种消费卷到某旅游景点消费额及其概率如下表:

200元

300元

400元

500元

老年

0.4

0.3

0.2

0.1

中年

0.3

0.4

0.2

0.1

青年

0.3

0.3

0.2

0.2

某天恰好有持有这种消费卷的老年人、中年人、青年人各一人到该旅游景点,(1)求这三人恰有两人消费额不少于300元的概率;(2)求这三人消费总额大于或等于1300元的概率。

查看答案和解析>>

(本小题满分12分)

为应对金融危机,刺激消费,某市给市民发放旅游消费卷,由抽样调查预计老、中、青三类市民持有这种消费卷到某旅游景点消费额及其概率如下表:

200元

300元

400元

500元

老年

0.4

0.3

0.2

0.1

中年

0.3

0.4

0.2

0.1

青年

0.3

0.3

0.2

0.2

某天恰好有持有这种消费卷的老年人、中年人、青年人各一人到该旅游景点,

(Ⅰ)求这三人消费总额大于1300元的概率;

(Ⅱ)设这三人中消费额大于300元的人数为,求的分布列及数学期望。

 

 

查看答案和解析>>

为应对金融危机,刺激消费,某市给市民发放面额为100元的旅游消费卷,由抽样调查预计老、中、青三类市民持有这种消费卷到某旅游景点消费额及其概率如下表:
200元300元400元500元
老年0.40.30.20.1
中年0.30.40.20.1
青年0.30.30.20.2
某天恰好有持有这种消费卷的老年人、中年人、青年人各一人到该旅游景点,
(1)求这三人恰有两人消费额不少于300元的概率;
(2)求这三人消费总额大于或等于1300元的概率.

查看答案和解析>>

一、

C A CBC     A D AB D     B A

二、

13.5;   14.;     15. 36;      16.20

三、

17.解:(1)依题意得:

所以:,……4分

20090508

(2)设,则

由正弦定理:,

所以两个正三角形的面积和,…………8分

……………10分

所以:………………………………………………………………12分

18.解:(1);……………………6分

(2)消费总额为1500元的概率是:……………………7分

消费总额为1400元的概率是:………8分

消费总额为1300元的概率是:

,…11分

所以消费总额大于或等于1300元的概率是;……………………12分

19.(1)证明:因为,所以平面

又因为

平面

平面平面;…………………4分

(2)因为,所以平面,所以点到平面的距离等于点E到平面的距离,

过点E作EF垂直CD且交于点F,因为平面平面,所以平面

所以的长为所求,………………………………………………………………………6分

因为,所以为二面角的平面角,

=1,

到平面的距离等于1;…………………………………………………………8分

(3)连接,由平面,得到

所以是二面角的平面角,

,…………………………………………………………………11分

二面角大小是。……12分

20.解:(1)设等差数列的公差为,依题意得:

解得,所以,…………………3分

所以

所以;…………………………………………………………………6分

(2),因为,所以数列是递增数列,…8分

当且仅当时,取得最小值,

则:

所以,即的取值范围是。………………………………………12分

21.解:(1)设点的坐标为,则点的坐标为,点的坐标为

因为,所以,得到:,注意到不共线,所以轨迹方程为;…………………………………5分

(2)设点是轨迹C上的任意一点,则以为直径的圆的圆心为

假设满足条件的直线存在,设其方程为,直线被圆截得的弦为

 

…………………………………………7分

弦长为定值,则,即

此时,……………………………………………………9分

所以当时,存在直线,截得的弦长为

    当时,不存在满足条件的直线。……………………………………………12分

22.解:(1)

,……2分

因为当时取得极大值,所以

所以的取值范围是:;………………………………………………………4分

(2)由下表:

0

0

递增

极大值

递减

极小值

递增

………………………7分

画出的简图:

依题意得:

解得:

所以函数的解析式是:

;……9分

(3)对任意的实数都有

依题意有:函数在区间

上的最大值与最小值的差不大于

………10分

在区间上有:

,

的最大值是

的最小值是,……13分

所以

的最小值是。………………………………………14分