(1)求数列.的通项公式, 查看更多

 

题目列表(包括答案和解析)

已知数列{an}的首项为1,前n项和为Sn,且满足an+1=3Sn,n∈N*.数列{bn}满足bn=log4an
(1)求数列{an}的通项公式;
(2)当n≥2时,试比较b1+b2+…+bn
1
2
(n-1)2
的大小,并说明理由;
(3)试判断:当n∈N*时,向量
a
=(an,bn)是否可能恰为直线l:y=
1
2
x+1
的方向向量?请说明你的理由.

查看答案和解析>>

函数f(x)=
x
1-x
(0<x<1)
的反函数为f-1(x),数列{an}和{bn}满足:a1=
1
2
,an+1=f-1(an),函数y=f-1(x)的图象在点(n,f-1(n))(n∈N*)处的切线在y轴上的截距为bn
(1)求数列{an}的通项公式;
(2)若数列{
bn
a
2
n
-
λ
an
}
;的项中仅
b5
a
2
5
-
λ
a5
最小,求λ的取值范围;
(3)令函数g(x)=[f-1(x)+f(x)]- 
1-x2
1+x2
,0<x<1.数列{xn}满足:x1=
1
2
,0<xn<1且xn+1=g(xn),(其中n∈N*).证明:
(x1-x2)2
x1x2
+
(x2-x3)2
x2x3
+…+
(xn+1-xn)2
xnxn+1
2
+1
8

查看答案和解析>>

已知数列{an}为等比数列,a2=6,a5=162.
(1)求数列{an}的通项公式;
(2)设Sn是数列{an}的前n项和,证明
SnSn+2
S
2
n+1
≤1

查看答案和解析>>

已知数列{an}和{bn}满足a1=2,an-1=an(an+1-1),bn=an-1,数列{bn}的前n和为Sn
(1)求数列{bn}的通项公式;
(2)设Tn=S2n-Sn,求证:Tn+1>Tn
(3)求证:对任意的n∈N*1+
n
2
S2n
1
2
+n
成立.

查看答案和解析>>

设数列{bn}的前n项和为Sn,且bn=2-2Sn;数列{an}为等差数列,且a5=14,a7=20.
(1)求数列{bn}的通项公式;
(2)若cn=an•bn,n=1,2,3,…,Tn为数列{cn}的前n项和.求证:Tn
72

查看答案和解析>>

一、

C A CBC     A D AB D     B A

二、

13.5;   14.;     15. 36;      16.20

三、

17.解:(1)依题意得:

所以:,……4分

20090508

(2)设,则

由正弦定理:,

所以两个正三角形的面积和,…………8分

……………10分

所以:………………………………………………………………12分

18.解:(1);……………………6分

(2)消费总额为1500元的概率是:……………………7分

消费总额为1400元的概率是:………8分

消费总额为1300元的概率是:

,…11分

所以消费总额大于或等于1300元的概率是;……………………12分

19.(1)证明:因为,所以平面

又因为

平面

平面平面;…………………4分

(2)因为,所以平面,所以点到平面的距离等于点E到平面的距离,

过点E作EF垂直CD且交于点F,因为平面平面,所以平面

所以的长为所求,………………………………………………………………………6分

因为,所以为二面角的平面角,

=1,

到平面的距离等于1;…………………………………………………………8分

(3)连接,由平面,得到

所以是二面角的平面角,

,…………………………………………………………………11分

二面角大小是。……12分

20.解:(1)设等差数列的公差为,依题意得:

解得,所以,…………………3分

所以

所以;…………………………………………………………………6分

(2),因为,所以数列是递增数列,…8分

当且仅当时,取得最小值,

则:

所以,即的取值范围是。………………………………………12分

21.解:(1)设点的坐标为,则点的坐标为,点的坐标为

因为,所以,得到:,注意到不共线,所以轨迹方程为;…………………………………5分

(2)设点是轨迹C上的任意一点,则以为直径的圆的圆心为

假设满足条件的直线存在,设其方程为,直线被圆截得的弦为

 

…………………………………………7分

弦长为定值,则,即

此时,……………………………………………………9分

所以当时,存在直线,截得的弦长为

    当时,不存在满足条件的直线。……………………………………………12分

22.解:(1)

,……2分

因为当时取得极大值,所以

所以的取值范围是:;………………………………………………………4分

(2)由下表:

0

0

递增

极大值

递减

极小值

递增

………………………7分

画出的简图:

依题意得:

解得:

所以函数的解析式是:

;……9分

(3)对任意的实数都有

依题意有:函数在区间

上的最大值与最小值的差不大于

………10分

在区间上有:

,

的最大值是

的最小值是,……13分

所以

的最小值是。………………………………………14分