已知点的坐标为.点为轴负半轴上的动点.以线段为边作菱形.使其两对角线的交点恰好在轴上. 查看更多

 

题目列表(包括答案和解析)

选修4-4:坐标系与参数方程
已知极点与坐标原点重合,极轴与x轴非负半轴重合,M是曲线C:ρ=4sinθ上任意一点,点P满足
OP
=3
OM
,设点P的轨迹为曲线Q.
(Ⅰ)求曲线Q的方程;
(Ⅱ)设曲线Q与直线l:
x=-t
y=t+a
(t为参数)相交于A,B两点且|AB|=4,求实数a的值.

查看答案和解析>>

(2012•湖南模拟)已知中心在坐标原点焦点在x轴上的椭圆C,其长轴长等于4,离心率为
2
2

(Ⅰ)求椭圆C的标准方程;
(Ⅱ)若点E(0,1),问是否存在直线l:y=kx+m与椭圆C交于M,N两点,且|ME|=|NE|?若存在,求出k的取值范围,若不存在,请说明理由.

查看答案和解析>>

已知顶点是坐标原点,对称轴是轴的抛物线经过点A.

(Ⅰ)、求抛物线的标准方程.

(Ⅱ)、直线过定点,斜率为,当为何值时,直线与抛物线有两个公共点?

 

 

查看答案和解析>>

(本小题满分12分)已知顶点在坐标原点,焦点在轴正半轴的抛物线上有一点点到抛物线焦点的距离为1.(1)求该抛物线的方程;(2)设为抛物线上的一个定点,过作抛物线的两条互相垂直的弦,,求证:恒过定点.(3)直线与抛物线交于,两点,在抛物线上是否存在点,使得△为以为斜边的直角三角形.

 

查看答案和解析>>

已知,当坐标为()时,

(1)求过点P1,P2的直线方程;

(2)试用数学归纳法证明:对于都在(1)中的直线上;

(3)试求使不等式对于所有成立的最大实数的值。.

查看答案和解析>>

 

一、CABCB   BDADD   AC

二、13.  0.1;14.;15. 36;16.存在,通项公式

三、

17.解:(1)依题意得:

得:

所以:,即,………………………………4分

20090508

(2)设,则

    由正弦定理:,

       所以两个正三角形的面积和,…………8分

              ……………10分

      

       所以:……………………………………12分

18.解:(1);………………………4分

       (2)消费总额为1500元的概率是:………………………5分

消费总额为1400元的概率是:………6分

消费总额为1300元的概率是:

所以消费总额大于或等于1300元的概率是;……………………8分

(3)

所以的分布列为:

0

1

2

3

 

0.294

0.448

0.222

0.036

………………………………………………11分

       数学期望是:。…………12分

19.(1)证明:因为,所以平面

又因为平面

平面平面;…………………4分

(2)因为,所以平面

所以点到平面的距离等于点E到平面的距离,

过点E作EF垂直CD且交于点F,因为平面平面

所以平面

所以的长为所求,………………………………………………………6分

因为,所以为二面角的平面角,=1,

到平面的距离等于1;…………………………8分

       (3)连接,由平面,得到

       所以是二面角的平面角,

       ,…………………………………………………11分

       又因为平面平面,二面角的大小是。……12分

20.解:(1)设等差数列的公差为,依题意得:

      

       解得,所以,…………………3分

       所以

      

       所以;…………………………………………………………………6分

       (2),因为

       所以数列是递增数列,…8分

       当且仅当时,取得最小值,则:

       所以,即的取值范围是。………………12分

21.解:(1)设点的坐标为,则点的坐标为,点的坐标为

因为,所以

得到:,注意到不共线,

所以轨迹方程为;……………5分

(2)设点是轨迹C上的任意一点,则以为直径的圆的圆心为

假设满足条件的直线存在,设其方程为,直线被圆截得的弦为

 

……………………………………………………7分

弦长为定值,则,即

此时……………………………………………………9分

所以当时,存在直线,截得的弦长为

   当时,不存在满足条件的直线。……………………………………………12分

22.解:(1)设,因为 上的增函数,且,所以上的增函数,

所以,得到;所以的取值范围为………4分

(2)由条件得到

猜测最大整数,……6分

现在证明对任意恒成立,

等价于

时,,当时,

所以对任意的都有

对任意恒成立,

所以整数的最大值为2;……………………………………………………9分

(3)由(2)得到不等式

所以,……………………11分

所以原不等式成立。…………………………………………………………………14分