4.吉林省生物制品厂生产了一批药品.它们来自甲.乙.丙三条生产线.其中来自甲生产线1000件.来自乙生产线2000件.来自丙生产线3000件.现采用分层抽样的方法对这批药品进行抽样检测.抽取的样品数为24件.则从乙生产线抽取的样品数是 A.4件 B.6件 C.8件 D.12件 查看更多

 

题目列表(包括答案和解析)

吉林省生物制品厂生产了一批药品,它们来自甲、乙、丙三条生产线,其中来自甲生产线1000件,来自乙生产线2000件,来自丙生产线3000件,现采用分层抽样的方法对这批药品进行抽样检测,抽取的样品数为24件.则从乙生产线抽取的样品数是


  1. A.
    4件
  2. B.
    6件
  3. C.
    8件
  4. D.
    12件

查看答案和解析>>

某中学生物兴趣小组在学校生物园地种植了一批名贵树苗,为了解树苗的生长情况,从这批树苗中随机地测量了其中50棵树苗的高度(单位:厘米),并把这些高度列成了如下的频数分布表:
分  组 [40,50) [50,60) [60,70) [70,80) [80,90) [90,100]
频  数 2 3 14 15 12 4
(1)在这批树苗中任取一棵,其高度不低于80厘米的概率是多少?
(2)这批树苗的平均高度大约是多少?(计算时用各组的中间值代替各组数据的平均值);
(3)为了进一步获得研究资料,若从[40,50)组中移出一棵树苗,从[90,100]组中移出两棵树苗进行试验研究,则[40,50)组中的树苗A和[90,100]组中的树苗C同时被移出的概率是多少?

查看答案和解析>>

某工厂生产了一批产品共有20件,其中5件是次品,其余都是合格品,现不放回的从中依次抽取2件.求:
(1)第一次抽到次品的概率;
(2)第一次和第二次都抽到次品的概率;
(3)在第一次抽到次品的条件下,第二次抽到次品的概率.

查看答案和解析>>

某制造商某月内生产了一批乒乓球,随机抽样100个进行检查,测得每个球的直径(单位:mm),将数据分组如下表:
分组 频数 频率
[39.95,39.97) 10
[39.97,39.99) 30
[39.99,40.01) 50
[40.01,40.03] 10
合计 100
(1)请在上表中补充完成频率分布表,并在上图中画出频率分布直方图;
(2)根据频率分布直方图,估计这批乒乓球直径的平均值与中位数(结果保留三位小数).

查看答案和解析>>

(本小题满分14分)

某中学生物兴趣小组在学校生物园地种植了一批名贵树苗,为了解树苗的生长情况,从这批树苗中随机地测量了其中50棵树苗的高度(单位:厘米),并把这些高度列成了如下的频数分布表:

分  组

[40 , 50)

[50,60)

[60,70)

[70,80)

[80,90)

[90 , 100]

频  数

2

3

14

15

12

4

(1) 在这批树苗中任取一棵,其高度不低于80厘米的概率是多少?

(2)这批树苗的平均高度大约是多少?(计算时用各组的中间值代替各组数据的平均值);

(3)为了进一步获得研究资料,若从[40,50)组中移出一棵树苗,从[90,100]组中移出两棵树苗进行试验研究,则[40 ,50)组中的树苗A和[90,100]组中的树苗C同时被移出的概率是多少?

 

查看答案和解析>>

 

1.B    2 D.  3.B    4.C      5.C     6.C    7.B    8.C    9.D   10.B

11.D   12.B

13.240   14.1     15.  16. ①②③

17.(本题满分10分)

解:(Ⅰ)由

       

(Ⅱ)

同理:

   

.

18.(本题满分12分)

解:(Ⅰ)记“这批太空种子中的某一粒种子既发芽又发生基因突变”为事件,则.    

(Ⅱ)

19.(本题满分12分)

  (Ⅰ)∵,∴{}是公差为4的等差数列,

a1=1, =+4(n-1)=4n-3,∵an>0,∴an= 

(Ⅱ)bn=Sn+1Sn=an+12=,由bn<,得m>,

g(n)= ,∵g(n)= n∈N*上是减函数,

g(n)的最大值是g(1)=5,

m>5,存在最小正整数m=6,使对任意n∈N*bn<成立

20.(本题满分12分)

解法一:

(I)设的中点,连结,则四边形为正方形,

.故,即

学科网(Zxxk.Com)

平面,                                   

(II)由(I)知平面

平面

的中点, 连结,又,则

的中点,连结,则,.

为二面角的平面角.

连结,在中,

的中点,连结

中,

二面角的余弦值为

解法二:

(I)以为原点,所在直线分别为轴,轴,轴建立如图所示的空间直角坐标系,则,.

学科网(Zxxk.Com),

又因为 所以,平面.

(II)设为平面的一个法向量.

    取,则

,设为平面的一个法向量,

,得,则

的夹角为,二面角,显然为锐角,

,

21.(本题满分12分)    

解:(Ⅰ) ,上是增函数,在上是减函数,

∴当时, 取得极大值.

.

,,

则有 ,

递增

极大值4

递减

极小值0

递增

所以,时,函数的极大值为4;极小值为0; 单调递增区间为.

(Ⅱ) 由(Ⅰ)知, ,的两个根分别为. ∵上是减函数,∴,即,

.

22.(本题满分12分)

解:(I)依题意,可知

 ,解得

∴椭圆的方程为

(II)直线与⊙相切,则,即

,得

∵直线与椭圆交于不同的两点

       ∴

,则

上单调递增          ∴.

 

 

 


同步练习册答案