22. 查看更多

 

题目列表(包括答案和解析)

( 本题满分12分 )
已知函数f(x)=cos4x-2sinxcosx-sin4x
(I)求f(x)的最小正周期;
(II)若x∈[0,
π2
]
,求f(x)的最大值,最小值.

查看答案和解析>>

(本题满分12分)已知函数f(x)=x3+ax2+bx+c,曲线y=f(x)在x=1处的切线不过第四象限且斜率为3,又坐标原点到切线的距离为,若x=时,y=f(x)有极值.

(1)求a、b、c的值;w.w.w.k.s.5.u.c.o.m    

(2)求y=f(x)在[-3,1]上的最大值和最小值.

查看答案和解析>>

(本题满分12分)

已知函数

(1)当时,求的最大值和最小值

(2)若上是单调函数,且,求的取值范围

 

查看答案和解析>>

(本题满分12分)   已知函数

   (Ⅰ)当的 单调区间;

   (Ⅱ)当的取值范围。

查看答案和解析>>

(本题满分12分)     已知函数.

(Ⅰ) 求f 1(x);

(Ⅱ) 若数列{an}的首项为a1=1,(nÎN+),求{an}的通项公式an

(Ⅲ) 设bn=an+12+an+22+¼+a2n+12,是否存在最小的正整数k,使对于任意nÎN+bn<成立. 若存在,求出k的值;若不存在,说明理由.

查看答案和解析>>

 

1.B    2 D.  3.B    4.C      5.C     6.C    7.B    8.C    9.D   10.B

11.D   12.B

13.240   14.1     15.  16. ①②③

17.(本题满分10分)

解:(Ⅰ)由

       

(Ⅱ)

同理:

   

.

18.(本题满分12分)

解:(Ⅰ)记“这批太空种子中的某一粒种子既发芽又发生基因突变”为事件,则.    

(Ⅱ)

19.(本题满分12分)

  (Ⅰ)∵,∴{}是公差为4的等差数列,

a1=1, =+4(n-1)=4n-3,∵an>0,∴an= 

(Ⅱ)bn=Sn+1Sn=an+12=,由bn<,得m>,

g(n)= ,∵g(n)= n∈N*上是减函数,

g(n)的最大值是g(1)=5,

m>5,存在最小正整数m=6,使对任意n∈N*bn<成立

20.(本题满分12分)

解法一:

(I)设的中点,连结,则四边形为正方形,

.故,即

学科网(Zxxk.Com)

平面,                                   

(II)由(I)知平面

平面

的中点, 连结,又,则

的中点,连结,则,.

为二面角的平面角.

连结,在中,

的中点,连结

中,

二面角的余弦值为

解法二:

(I)以为原点,所在直线分别为轴,轴,轴建立如图所示的空间直角坐标系,则,.

学科网(Zxxk.Com),

又因为 所以,平面.

(II)设为平面的一个法向量.

    取,则

,设为平面的一个法向量,

,得,则

的夹角为,二面角,显然为锐角,

,

21.(本题满分12分)    

解:(Ⅰ) ,上是增函数,在上是减函数,

∴当时, 取得极大值.

.

,,

则有 ,

递增

极大值4

递减

极小值0

递增

所以,时,函数的极大值为4;极小值为0; 单调递增区间为.

(Ⅱ) 由(Ⅰ)知, ,的两个根分别为. ∵上是减函数,∴,即,

.

22.(本题满分12分)

解:(I)依题意,可知

 ,解得

∴椭圆的方程为

(II)直线与⊙相切,则,即

,得

∵直线与椭圆交于不同的两点

       ∴

,则

上单调递增          ∴.

 

 

 


同步练习册答案