题目列表(包括答案和解析)
(本题满分14分)
已知实数
,曲线
与直线
的交点为
(异于原点
),在曲线
上取一点
,过点
作
平行于
轴,交直线
于点
,过点
作
平行于
轴,交曲线
于点
,接着过点
作
平行于
轴,交直线
于点
,过点
作
平行于
轴,交曲线
于点
,如此下去,可以得到点
,
,…,
,… . 设点
的坐标为
,
.
(Ⅰ)试用
表示
,并证明
;
(Ⅱ)试证明
,且
(
);
(本题满分14分)
已知函数
图象上一点
处的切线方程为
.
(Ⅰ)求
的值;
(Ⅱ)若方程
在
内有两个不等实根,求
的取值范围(其中
为自然对数的底数);
(Ⅲ)令
,若
的图象与
轴交于
,
(其中
),
的中点为
,求证:
在
处的导数
.
(本题满分14分)
已知曲线
方程为
,过原点O作曲线
的切线![]()
(1)求
的方程;
(2)求曲线
,
及
轴围成的图形面积S;
(本题满分14分)
已知中心在原点,对称轴为坐标轴的椭圆,左焦点
,一个顶点坐标为(0,1)
(1)求椭圆方程;
(2)直线
过椭圆的右焦点
交椭圆于A、B两点,当△AOB面积最大时,求直线
方程。
(本题满分14分)
如图,在直三棱柱
中,
,
,求二面角
的大小。
![]()
![]()
一、选择题:
题号
1
2
3
4
5
6
7
8
9
10
答案










二、填空题:
11.
; 12.
;
13.
;
14.
;
15.
; 16. ③ ④ .
三、解答题:
17.解:(1)在
中,由
,得
, 又由正弦定理:
得:
.
……………………4分
(2)由余弦定理:
得:
,
即
,解得
或
(舍去),所以
.
……8分
所以,


即
.
…………………12分
18.解:(1)依题意,双曲线
的方程可设为:
、
,
则
解之得:
,
所以双曲线
的方程为:
.
……………………6分
(2)设
、
,直线
与
轴交于
点,此点即为双曲线
的右焦点,由
消去
,得
,
此方程的
且
,
,
所以
、
两点分别在左、右支上,不妨设
在左支、
在右支上 ………9分
则由第二定义知:
,
, …………11分
所以


,即
. ………14分
(亦可求出
、
的坐标,用两点间距离公式求.)
19.(1)当点
为
的中点时,
与平面
平行.
∵在
中,
、
分别为
、
的中点
∴
∥
又
平面
,而
平面
∴
∥平面
.
……………………4分
(2)证明(略证):易证
平面
,又
是
在平面
内的射影,
,∴
.
……………………8分
(3)∵
与平面
所成的角是
,∴
,
,
.
过
作
于
,连
,则
. …………………10分
易知:
,
,设
,则
,
,
在
中,
,
得
.
………14分
解法二:(向量法)(1)同解法一
(2)建立图示空间直角坐标系,则
,
,
,
.
设
,则

∴
(本小题4分)
(3)设平面
的法向量为
,由
,
得:
,
依题意
,∴
,
得
.
(本小题6分)
20.解:(1)
,
∴可设
,
因而
①
由
得
②
∵方程②有两个相等的根,
∴
,即
解得
或
由于
,
(舍去),将
代入 ① 得
的解析式
.
…………………6分
(2)
=
,
∵
在区间
内单调递减,
∴
在
上的函数值非正,
由于
,对称轴
,故只需
,注意到
,∴
,得
或
(舍去)
故所求a的取值范围是
.
…………………11分
(3)
时,方程
仅有一个实数根,即证方程
仅有一个实数根.令
,由
,得
,
,易知
在
,
上递增,在
上递减,
的极大值
,
的极小值
,故函数
的图像与
轴仅有一个交点,∴
时,方程
仅有一个实数根,得证.
……………………16分
21.解:(1)
, ……………………1分
=
.
……………………4分
(2)
,
……………………5分

,………7分
∴数列
是
为首项,
为公比的等比数列. ……………………8分
(3)由(2)知
, Sn =
, ……………9分
=
∵0<
<1,∴
>0,
,0<
<1,
,
∴
,
……………………11分
又当
时,
,∴
, ……………………13分
∴
<
.……14分
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com