所以直线的方程为 .或 . ----.. 6分(Ⅱ)解: 查看更多

 

题目列表(包括答案和解析)

过坐标原点且与圆相切的直线的方程为

A.      B.  

C.    D.

查看答案和解析>>

设椭圆 )的一个顶点为分别是椭圆的左、右焦点,离心率 ,过椭圆右焦点 的直线  与椭圆 交于 , 两点.

(1)求椭圆的方程;

(2)是否存在直线 ,使得 ,若存在,求出直线  的方程;若不存在,说明理由;

【解析】本试题主要考查了椭圆的方程的求解,以及直线与椭圆的位置关系的运用。(1)中椭圆的顶点为,即又因为,得到,然后求解得到椭圆方程(2)中,对直线分为两种情况讨论,当直线斜率存在时,当直线斜率不存在时,联立方程组,结合得到结论。

解:(1)椭圆的顶点为,即

,解得椭圆的标准方程为 --------4分

(2)由题可知,直线与椭圆必相交.

①当直线斜率不存在时,经检验不合题意.                    --------5分

②当直线斜率存在时,设存在直线,且.

,       ----------7分

,               

   = 

所以,                               ----------10分

故直线的方程为 

 

查看答案和解析>>

过点M(3,-4)且在两坐标轴上的截距相等的直线的方程为(  )

查看答案和解析>>

一条光线从点A(-2,3)射出,经过x轴反射后,与圆C:x2+y2-6x-4y+12=0相切,则反射光线所在直线的方程为
4x-3y-1=0或3x-4y-6=0
4x-3y-1=0或3x-4y-6=0

查看答案和解析>>

平行于直线3x+4y-12=0,且与它的距离是7的直线的方程为
3x+4y+23=0或3x+4y-47=0
3x+4y+23=0或3x+4y-47=0

查看答案和解析>>


同步练习册答案