解:(Ⅰ)由题.得.设 查看更多

 

题目列表(包括答案和解析)

(本题满分14分)已知数列中,且点在直线上.   (1)求数列的通项公式;   (2)若函数求函数的最小值;   (3)设表示数列的前项和.试问:是否存在关于的整式,使得对于一切不小于2的自然数恒成立? 若存在,写出的解析式,并加以证明;若不存在,试说明理由.

查看答案和解析>>


(本题满分14分)设,方程有唯一解,已知,且
(1)求数列的通项公式;
(2)若,求和
(3)问:是否存在最小整数,使得对任意,有成立,若存在;求出的值;若不存在,说明理由。

查看答案和解析>>

 

(本题满分14分)设,方程有唯一解,已知,且

(1)求数列的通项公式;

  (2)若,求和

     (3)问:是否存在最小整数,使得对任意,有成立,若存在;求出的值;若不存在,说明理由。

 

查看答案和解析>>

(本题满分16分,第1问4分,第2问6分,第3问6分)

已知数列中,且点在直线上.

   (1)求数列的通项公式;

   (2)若函数求函数的最小值;

   (3)设表示数列的前项和。试问:是否存在关于的整式,使得

对于一切不小于2的自然数恒成立? 若存在,写出的解析式,并加以证明;若不存在,试说明理由.

查看答案和解析>>

(本题满分13分)
已知函数处取得极小值,其图象过点A(0,1),且在点A处切线的斜率为—1。
(1)求的解析式;
(2)设函数上的值域也是,则称区间为函数的“保值区间”。
①证明:当不存在“保值区间”;
②函数是否存在“保值区间”?若存在,写出一个“保值区间”(不必证明);若不存在,说明理由。

查看答案和解析>>


同步练习册答案