----③ ----1分由A2.Q.M三点共线.得 查看更多

 

题目列表(包括答案和解析)

(本小题满分12分)

P、Q、M、N四点都在椭圆上,F为椭圆在y轴正半轴上的焦点.已知

 

线,且共线.求四边形PMQN的面积的最小值和最大值.

 

查看答案和解析>>

设椭圆(常数)的左右焦点分别为是直线上的两个动点,

(1)若,求的值;

(2)求的最小值.

【解析】第一问中解:设

    由,得

  ② 

第二问易求椭圆的标准方程为:

所以,当且仅当时,取最小值

解:设 ……………………1分

,由     ①……2分

(1)由,得  ②   ……………1分

    ③    ………………………1分

由①、②、③三式,消去,并求得. ………………………3分

(2)解法一:易求椭圆的标准方程为:.………………2分

, ……4分

所以,当且仅当时,取最小值.…2分

解法二:, ………………4分

所以,当且仅当时,取最小值

 

查看答案和解析>>

某种项目的射击比赛,开始时在距目标100m处射击,如果命中记3分,且停止射击;若第一次射击未击中,可以进行第二次射击,但目标已在150m处,这时命中记2分,且停止射击;若第二次仍未命中,还可以进行第三射击,此时目标已在200m处,若第三次命中记1分,并停止射击;若三次都未命中,则记0分.已知射手甲在100m处击中目标的概率为0.5,他的命中率与距离的平方成反比,且各次射击都是独立的,设这位射手在这次射击比赛中的得分数为ξ.
(I)求ξ的分布列;
(II)求ξ的数学期望.

查看答案和解析>>

某种项目的射击比赛,开始时在距目标100米处射击,如果命中记3分,且停止射击; 若第一次射击未命中,可以进行第二次射击,但目标已经在150米处,这时命中记2分,且停止射击; 若第二次仍未命中,还可以进行第三次射击,此时目标已在200米处,若第三次命中则记1分,并停止射击; 若三次都未命中,则记0分.已知射手甲在100米处击中目标的概率为
12
,他的命中率与目标的距离的平方成反比,且各次射击都是独立的.
(Ⅰ)求这名射手分别在第二次、第三次射击中命中目标的概率及三次射击中命中目标的概率;
(Ⅱ)设这名射手在比赛中得分数为ξ,求随机变量ξ的概率分布列和数学期望.

查看答案和解析>>

某种项目的射击比赛,开始时在距目标100米处射击,如果命中记3分,且停止射击,若第一次射击未命中,可以进行第二次射击,但目标已经在150米处,这时命中记2分,且停止射击;若第二次仍未命中,还可以进行第三次射击,此时目标已在200米处,若第三次命中则记1分,并停止射击;若三次都未命中,则记0分,已知射手甲在100m处击中目标的概率为
12
,他的命中率与目标的距离的平方成反比,且各次射击都是独立的.
(1)求这名射手在三次射击中命中目标的概率;
(2)求这名射手比赛中得分的均值.

查看答案和解析>>


同步练习册答案