(3)设的最小整数c. 20070206 查看更多

 

题目列表(包括答案和解析)

(理) 设函数其中。(1)求的单调区间;

(2)当时,证明不等式:

(3)设的最小值为证明不等式:

查看答案和解析>>

设x为实数,定义{x}为不小于x的最小整数,例如{5.3}=6,{-5.3}=-5,则关于x的方程{3x+4}=2x+
32
的全部实根之和为
-6
-6

查看答案和解析>>

(2013•湖北)设n是正整数,r为正有理数.
(Ⅰ)求函数f(x)=(1+x)r+1-(r+1)x-1(x>-1)的最小值;
(Ⅱ)证明:
nr+1-(n-1)r+1
r+1
nr
(n+1)r+1-nr+1
r+1

(Ⅲ)设x∈R,记[x]为不小于x的最小整数,例如[2]=2,[π]=4,[-
3
2
]=-1
.令S=
381
+
382
+
383
+…+
3125
,求[S]
的值.
(参考数据:80
4
3
≈344.7,81
4
3
≈350.5,124
4
3
≈618.3,126
4
3
≈631.7)

查看答案和解析>>

在xoy平面上有一点列P1(a1,b1),P2(a2,b2),P3(a3,b3),…,Pn(an,bn),…,对每一个(n∈N+),点Pn(an,bn)在函数y=2000(
a10
)
x
(0<a<10)的图象上,且点Pn(an,bn)与点(n,0)和(n+1,0)构成一个以点Pn(an,bn)为顶点的等腰三角形.
(1)求点Pn(an,bn)的纵坐标bn关于n的表达式;
(2)若对每一个自然数n,以bn,bn+1,bn+2能构成一个三角形,求a的范围;
(3)设Bn=b1•b2•b3•…•bn(n∈N+),若a取(2)中确定的范围内的最小整数时,求{Bn}中的最大项.

查看答案和解析>>

设函数f(x)=a2x2(a>0),g(x)=blnx.
(1)若函数y=f(x)图象上的点到直线x-y-3=0距离的最小值为
2
,求a的值;
(2)关于x的不等式(x-1)2>f(x)的解集中的整数恰有3个,求实数a的取值范围;
(3)对于函数f(x)与g(x)定义域上的任意实数x,若存在常数k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,则称直线y=kx+m为函数f(x)与g(x)的“分界线”.设a=
2
2
,b=e,试探究f(x)与g(x)是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.

查看答案和解析>>

 

一、单项选择题(每小题5分,共60分)

1.B    2.B    3.D    4.C    5.C    6.D    7.A    8.D    9.B

10.C   11.B   12.A

二、填空题(每小题4分,共16分)

13.

14.

15.1

16.

三、解答题(本大题共6小题,共74分)

17.解:

是减函数.

又由

18.解:

表示本次比赛组织者可获利400万美元,既本次比赛马刺队(或活塞队)

以4:0获胜,所以

表示本次比赛组织者可获利500万美元,即本次比赛马刺队(或活塞队)

以4:1获胜,所以

同理

故的概率分布为

400

500

600

700

 

万美元.

19.解:由

平方相加得

此时

再平方相加得

结合

20.解:

∴四边形ABCD为两组对边相等的四边形.

故四边形ABCD是平行四边形.

21.解:

   (1)由抛物线在A处的切线斜率y′=3,设圆的方程为.①

又圆心在AB的中垂线上,即  ②

由①②得圆心.

   (2)联立直线与圆的方程得

.

22.解:

   (1)由题意得

为的等比数列,

为的等差数列,

   (2)

       

   (3)  ①

   ②

由①―②得

 


同步练习册答案