21.已知直线l:x两点与圆M与抛物线交在A处有公共的切线. (1)求圆M的方程, 查看更多

 

题目列表(包括答案和解析)

已知直线l:
1
1+a
x+(1-a2)y+a-1=0 (0<a<
1
2
)
与x轴、y轴分别交于A(m,0),B(0,n)两点,试比较m与n的大小关系,并证明你的结论.

查看答案和解析>>

已知椭圆C的中心在原点,焦点在x轴上,离心率是
12
,且左顶点与右焦点F的距离为3.
(1)求椭圆C的方程;
(2)过点F的直线交椭圆C于A、B两点,A、B在右准线l上的射影分别为M、N.求证:AN与BM的交点在x轴上.

查看答案和解析>>

如图所示,已知直线l:3x+4y-12=0与x,y轴的正半轴分别交于A,B两点,直线l1和线段AB,OA分别交于C,D且平分△AOB的面积.
(1)求△AOB的面积;
(2)求CD的最小值.

查看答案和解析>>

如图所示,已知直线l:3x+4y-12=0与x,y轴的正半轴分别交于A,B两点,直线l1和线段AB,OA分别交于C,D且平分△AOB的面积.
(1)求△AOB的面积;
(2)求CD的最小值.

查看答案和解析>>

如图所示,已知直线l:3x+4y-12=0与x,y轴的正半轴分别交于A,B两点,直线l1和线段AB,OA分别交于C,D且平分△AOB的面积.
(1)求△AOB的面积;
(2)求CD的最小值.

查看答案和解析>>

 

一、单项选择题(每小题5分,共60分)

1.B    2.B    3.D    4.C    5.C    6.D    7.A    8.D    9.B

10.C   11.B   12.A

二、填空题(每小题4分,共16分)

13.

14.

15.1

16.

三、解答题(本大题共6小题,共74分)

17.解:

是减函数.

又由

18.解:

表示本次比赛组织者可获利400万美元,既本次比赛马刺队(或活塞队)

以4:0获胜,所以

表示本次比赛组织者可获利500万美元,即本次比赛马刺队(或活塞队)

以4:1获胜,所以

同理

故的概率分布为

400

500

600

700

 

万美元.

19.解:由

平方相加得

此时

再平方相加得

结合

20.解:

∴四边形ABCD为两组对边相等的四边形.

故四边形ABCD是平行四边形.

21.解:

   (1)由抛物线在A处的切线斜率y′=3,设圆的方程为.①

又圆心在AB的中垂线上,即  ②

由①②得圆心.

   (2)联立直线与圆的方程得

.

22.解:

   (1)由题意得

为的等比数列,

为的等差数列,

   (2)

       

   (3)  ①

   ②

由①―②得

 


同步练习册答案