过A.P点作速度v的垂线.交点即为质子在磁场中作圆周运动的圆心O1.由几何关系得α=θ=30º. 所以:r=2OA=20cm.设磁感应强度为B.根据质子的运动方向和左手定则.可判断磁感应强度的方向为垂直于纸面向里.根据: 查看更多

 

题目列表(包括答案和解析)

已知圆M:x2+(y-2)2=1,设点B,C是直线l:x-2y=0上的两点,它们的横坐标分别是t,t+4(t∈R),P点的纵坐标为a且点P在线段BC上,过P点作圆M的切线PA,切点为A
(1)若t=0,MP=
5
,求直线PA的方程;
(2)经过A,P,M三点的圆的圆心是D,
①将DO2表示成a的函数f(a),并写出定义域.
②求线段DO长的最小值.

查看答案和解析>>

已知椭圆
x2
a2
+
y2
b2
=1
(a>b>0)的两准线间距离为6,离心率e=
3
3
.过椭圆上任意一点P,作右准线的垂线PH(H为垂足),并延长PH到Q,使得
PH
HQ
(λ>0)
.F2为该椭圆的右焦点,设点P的坐标为(x0,y0).
(1)求椭圆方程;
(2)当点P在椭圆上运动时,求λ的值使得点Q的轨迹是一个定圆.

查看答案和解析>>

已知椭圆
x2
a2
+
y2
b2
=1
(a>b>0)的两准线间距离为6,离心率e=
3
3
.过椭圆上任意一点P,作右准线的垂线PH(H为垂足),并延长PH到Q,使得
PH
HQ
(λ>0)
.F2为该椭圆的右焦点,设点P的坐标为(x0,y0).
(1)求椭圆方程;
(2)求证:PF2=
3-x0
3

(3)当点P在椭圆上运动时,试探究是否存在实数λ,使得点Q在同一个定圆上,若存在,求出λ的值及定圆方程;否则,请说明理由.

查看答案和解析>>

过点P(3,4)的动直线与两坐标轴的交点分别为A,B,过A,B分别作两坐标轴的垂线交于点M,则点M的轨迹方程为
4x+3y=xy
4x+3y=xy

查看答案和解析>>

已知圆M:x2+(y-2)2=1,定点A(4,2)在直线x-2y=0上,点P在线段OA上,过P点作圆M的切线PT,切点为T.
(1)若MP=
5
,求直线PT的方程;
(2)经过P,M,T三点的圆的圆心是D,求线段DO长的最小值L.

查看答案和解析>>


同步练习册答案