∴..∴点列{Bn}的极限点B的坐标为. ---2分 查看更多

 

题目列表(包括答案和解析)

在平面直角坐标系中,已知三个点列{An},{Bn},{Cn},其中An(n,an),Bn(n,bn),Cn(n-1,0),满足向量
AnAn+1
与向量
BnCn
平行,并且点列{Bn}在斜率为6的同一直线上,n=1,2,3,….
(1)证明:数列{bn}是等差数列;
(2)试用a1,b1与n表示an(n≥2);
(3)设a1=a,b1=-a,是否存在这样的实数a,使得在a6与a7两项中至少有一项是数列{an}的最小项?若存在,请求出实数a的取值范围;若不存在,请说明理由;
(4)若a1=b1=3,对于区间[0,1]上的任意λ,总存在不小于2的自然数k,当n≥k时,an≥(1-λ)(9n-6)恒成立,求k的最小值.

查看答案和解析>>

已知一列非零向
an
满足:
a1
=(x1y1),
an
=(xnyn)=
1
2
(xn-1-yn-1xn-1+yn-1)(n≥2)

(Ⅰ)证明:{|
an
|}
是等比数列;
(Ⅱ)求向量
a
n-1
a
n
的夹角(n≥2)

(Ⅲ)设
a
1
=(1,2),把
a1
a2
,…,
an
,…中所有与
a1
共线的向量按原来的顺序排成
一列,记为
b1
b2
,…,
.
bn
,…,令
OB
n
=
b1
+
b2
+…+
bn
,0
为坐标原点,求点列{Bn}的极限点B的坐标.
(注:若点Bn坐标为(tnsn),且
lim
n→∞
tn=t,
lim
n→∞
sn=s,则称点B(t,s)为点列{Bn}
的极限点.)

查看答案和解析>>

(2006•丰台区一模)在平面直角坐标系中,已知三个点列{An},{Bn},{Cn},其中An(n,an),Bn(n,bn),Cn(n-1,0),满足向量
AnAn+1
与向量
BnCn
共线,且点列{Bn}在斜率为6的直线上,n=1,2,3,….
(Ⅰ)证明数列{bn}是等差数列;
(Ⅱ)试用a1,b1与n表示an(n≥2);
(Ⅲ)设a1=a,b1=-a,在a6与a7两项中至少有一项是数列{an}的最小项,试求实数 a的取值范围.

查看答案和解析>>

已知一列非零向量
an
,n∈N*,满足:
a1
=(10,-5),
an
=(xnyn)=k(xn-1-yn-1xn-1+yn-1)
,(n32 ).,其中k是非零常数.
(1)求数列{|
an
|}是的通项公式;
(2)求向量
an-1
an
的夹角;(n≥2);
(3)当k=
1
2
时,把
a1
a2
,…,
an
,…中所有与
a1
共线的向量按原来的顺序排成一列,记为
b1
b2
,…,
bn
,…,令
OBn
=
b1
+
b2
+…+
bn
,O为坐标原点,求点列{Bn}的极限点B的坐标.(注:若点坐标为(tn,sn),且
lim
n→∞
tn=t
lim
n→∞
sn=s
,则称点B(t,s)为点列的极限点.)

查看答案和解析>>

一非零向量列{an}满足a1=(x1,y1),an=(xn,yn)=(xn-1-yn-1,xn-1+yn-1)(n≥2),

(1)证明:{|an|}是等比数列;

(2)求an-1an的夹角θn(n≥2),若bn=2nθn-1,Sn=b1+b2+…+bn,求Sn

(3)设a1=(1,2),把a1a2,…,an,…中所有与a1共线的向量按照原来的顺序排成一列,记为b1b2,…,bn,…,令=b1+b2+b3+…+bn(O为坐标原点),

    求点列{Bn}的极限点B的坐标(注:若点Bn的坐标为(tn,sn)且tn=t,sn=s,则点B(t,s)为点列{Bn}的极限点).

查看答案和解析>>


同步练习册答案