而.所以为等差数列. --- 2分 查看更多

 

题目列表(包括答案和解析)

已知递增等差数列满足:,且成等比数列.

(1)求数列的通项公式

(2)若不等式对任意恒成立,试猜想出实数的最小值,并证明.

【解析】本试题主要考查了数列的通项公式的运用以及数列求和的运用。第一问中,利用设数列公差为

由题意可知,即,解得d,得到通项公式,第二问中,不等式等价于,利用当时,;当时,;而,所以猜想,的最小值为然后加以证明即可。

解:(1)设数列公差为,由题意可知,即

解得(舍去).      …………3分

所以,.        …………6分

(2)不等式等价于

时,;当时,

,所以猜想,的最小值为.     …………8分

下证不等式对任意恒成立.

方法一:数学归纳法.

时,,成立.

假设当时,不等式成立,

时,, …………10分

只要证  ,只要证 

只要证  ,只要证 

只要证  ,显然成立.所以,对任意,不等式恒成立.…14分

方法二:单调性证明.

要证 

只要证  ,  

设数列的通项公式,        …………10分

,    …………12分

所以对,都有,可知数列为单调递减数列.

,所以恒成立,

的最小值为

 

查看答案和解析>>

(本题16分)某国采用养老储备金制度,公民在就业的第一年就交纳养老储备金,数目为a1,以后每年交纳的数目均比上一年增加 dd>0), 因此,历年所交纳的储备金数目a1, a2, … 是一个公差为 的等差数列.  与此同时,国家给予优惠的计息政府,不仅采用固定利率,而且计算复利. 这就是说,如果固定年利率为rr>0),那么, 在第n年末,第一年所交纳的储备金就变为 a1(1+rn-1,第二年所交纳的储备金就变成 a2(1+rn-2,……. 以Tn表示到第n年末所累计的储备金总额.(Ⅰ)写出TnTn-1n≥2)的递推关系式;(Ⅱ)求证Tn=An+ Bn,其中{An}是一个等比数列,{Bn}是一个等差数列.

查看答案和解析>>

(本题16分)某国采用养老储备金制度,公民在就业的第一年就交纳养老储备金,数目为a1,以后每年交纳的数目均比上一年增加 dd>0), 因此,历年所交纳的储备金数目a1, a2, … 是一个公差为 的等差数列. 与此同时,国家给予优惠的计息政府,不仅采用固定利率,而且计算复利. 这就是说,如果固定年利率为rr>0),那么, 在第n年末,第一年所交纳的储备金就变为 a1(1+rn-1,第二年所交纳的储备金就变成 a2(1+rn-2,……. 以Tn表示到第n年末所累计的储备金总额.(Ⅰ)写出TnTn-1n≥2)的递推关系式;(Ⅱ)求证Tn=An+ Bn,其中{An}是一个等比数列,{Bn}是一个等差数列.

查看答案和解析>>

(本小题满分14分)某国采用养老储备金制度.公民在就业的第一年就交纳养老储备金,数目为a1,以后每年交纳的数目均比上一年增加dd>0),因此,历年所交纳的储务金数目a1a2,…是一个公差为d的等差数列,与此同时,国家给予优惠的计息政策,不仅采用固定利率,而且计算复利.这就是说,如果固定年利率为rr>0),那么,在第n年末,第一年所交纳的储备金就变为a1(1+ra-1,第二年所交纳的储备金就变为a2(1+ra-2,……,以Tn表示到第n年末所累计的储备金总额.
(Ⅰ)写出TnTn-1(n≥2)的递推关系式;
(Ⅱ)求证:TnAnBn,其中{An}是一个等比数列,{Bn}是一个等差数列.

查看答案和解析>>

(本小题满分14分)

某国采用养老储备金制度.公民在就业的第一年就交纳养老储备金,数目为a1,以后每年交纳的数目均比上一年增加dd>0),因此,历年所交纳的储务金数目a1a2,…是一个公差为d的等差数列,与此同时,国家给予优惠的计息政策,不仅采用固定利率,而且计算复利.这就是说,如果固定年利率为rr>0),那么,在第n年末,第一年所交纳的储备金就变为a1(1+ra-1,第二年所交纳的储备金就变为a2(1+ra-2,……,以Tn表示到第n年末所累计的储备金总额.

(Ⅰ)写出TnTn-1(n≥2)的递推关系式;

(Ⅱ)求证:TnAnBn,其中{An}是一个等比数列,{Bn}是一个等差数列.

 

查看答案和解析>>


同步练习册答案