原不等式成立. --------14分解法二:(Ⅰ)同解法一. 查看更多

 

题目列表(包括答案和解析)

要证,只需证,即需,即需证,即证35>11,因为35>11显然成立,所以原不等式成立。以上证明运用了

A.比较法           B.综合法           C.分析法           D.反证法

 

查看答案和解析>>

某同学在证明命题“
7
-
3
6
-
2
”时作了如下分析,请你补充完整.
要证明
7
-
3
6
-
2
,只需证明
7
+
2
6
+
3
7
+
2
6
+
3
,只需证明
(
7
+
2
)2<(
6
+
3
)2
(
7
+
2
)2<(
6
+
3
)2

展开得9+2
14
<9+2
18
,即
14
18
,只需证明14<18,
因为14<18显然成立
因为14<18显然成立

所以原不等式:
7
+
2
6
+
3
成立.

查看答案和解析>>

已知不等式x2-logmx-
1
4
<0
x∈(0,
2
2
)
时恒成立,则m的取值范围是
1
4
≤m<1
1
4
≤m<1

查看答案和解析>>

已知数列{ an}的前n项和为Sn,a1=1,Sn+1=4an+1,设bn=an+1-2an
(Ⅰ)证明数列{bn}是等比数列;
(Ⅱ)数列{cn}满足cn=
1
log2bn+3
(n∈N*),设Tn=c1c2+c2c3+c3c4+,…+cncn+1,求证,对一切n∈N*不等式Tn
1
4
恒成立.

查看答案和解析>>

已知f(x)=|log3x|,则下列不等式成立的是(  )
A、f(
1
2
)>f(2)
B、f(
1
3
)>f(3)
C、f(
1
4
)>f(
1
3
)
D、f(2)>f(3)

查看答案和解析>>


同步练习册答案