20.如图, 已知直三棱柱, ABC―A1B1C1的侧棱长为2, 底面△ABC是等腰直角三角形, 且∠ACB=90°, AC=2, D是AA1的中点.(1)求异面直线AB和C1D所成的角 ;(2) 若E为AB的中点, 求平面ABC与平面B1C1E所成二面角的平面角. 查看更多

 

题目列表(包括答案和解析)

(本小题满分10分)
已知三棱锥P-ABC中,PA⊥平面ABC,AB⊥AC,,N为AB上一点,AB="4AN," M、S分别为PB,BC的中点.以A为原点,射线AB,AC,AP分别为x,y,z轴正向建立如图空间直角坐标系.
(Ⅰ)证明:CM⊥SN;
(Ⅱ)求SN与平面CMN所成角的大小.

查看答案和解析>>

(本小题满分10分)
已知三棱锥P-ABC中,PA⊥平面ABC,AB⊥AC,,N为AB上一点,AB="4AN," M、S分别为PB,BC的中点.以A为原点,射线AB,AC,AP分别为x,y,z轴正向建立如图空间直角坐标系.
(Ⅰ)证明:CM⊥SN;
(Ⅱ)求SN与平面CMN所成角的大小.

查看答案和解析>>

(选修4-4:坐标系与参数方程) (本小题满分10分)

在直角坐标系xoy中,直线的参数方程为(t为参数),在极坐标系(与直角坐标系xoy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,圆C的方程为.

(Ⅰ)求圆C的直角坐标方程;

(Ⅱ)设圆C与直线交于点A、B,若点P的坐标为,求|PA|+|PB|.

23(本小题满分10分)

 已知三棱锥P-ABC中,PA⊥平面ABC,AB⊥AC,,N为AB上一点,AB=4AN, M、S分别为PB,BC的中点.以A为原点,射线AB,AC,AP分别为x,y,z轴正向建立如图空间直角坐标系.

(Ⅰ)证明:CM⊥SN;

(Ⅱ)求SN与平面CMN所成角的大小.

24.(本小题满分10分)

将一枚硬币连续抛掷次,每次抛掷互不影响. 记正面向上的次数为奇数的概率为,正面向上的次数为偶数的概率为.

 (Ⅰ)若该硬币均匀,试求

 (Ⅱ)若该硬币有暇疵,且每次正面向上的概率为,试比较的大小.

查看答案和解析>>

(选修4-4:坐标系与参数方程) (本小题满分10分)

在直角坐标系xoy中,直线的参数方程为(t为参数),在极坐标系(与直角坐标系xoy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,圆C的方程为.

(Ⅰ)求圆C的直角坐标方程;

(Ⅱ)设圆C与直线交于点A、B,若点P的坐标为,求|PA|+|PB|.

23(本小题满分10分)

 已知三棱锥P-ABC中,PA⊥平面ABC,AB⊥AC,,N为AB上一点,AB=4AN, M、S分别为PB,BC的中点.以A为原点,射线AB,AC,AP分别为x,y,z轴正向建立如图空间直角坐标系.

(Ⅰ)证明:CM⊥SN;

(Ⅱ)求SN与平面CMN所成角的大小.

24.(本小题满分10分)

将一枚硬币连续抛掷次,每次抛掷互不影响. 记正面向上的次数为奇数的概率为,正面向上的次数为偶数的概率为.

 (Ⅰ)若该硬币均匀,试求

 (Ⅱ)若该硬币有暇疵,且每次正面向上的概率为,试比较的大小.

查看答案和解析>>

YC一、选择题:CDBBA,  CBDDB,  DB 

二、填空题:13. ;  14.3   15.76   16.(1,e);e

三、解答题:

17.解:(1)f(x)=-3x2+6x+9                        …………2分

   令 f(x)<0,解得x<-1或x>3。                   …………4分

   *函数f(x)的单调递减区间为(-。   …………5分

(2)f(-2)=2+a ,     f(2)=22+a

  f(2)>f(―2)

在(―1,3)上f(x)>0    f(x)在[―1,2]上单调递增。

又f(x)在[―2,1]上单调递减。              …………8分

∴f2)和f(-1)分别是f(x)在[―2,2]上的最大值和最小值。

于是有  22+a=20 , 解得a=-2

故f(x)=―x3+3x2+9x-2                        …………10分

 

∴f(-1)=-7

即f(x)在[―2,2]上的最小值为-7 。         …………12分

18. 用表示一天之内第个部件需要调整的事件,,则                ……………………1分

    以表示一天之内需要调整的部件数,则

  (Ⅰ)……4分

  (Ⅱ)………7分

  (Ⅲ)              ……………………8分

    …………9分

                     ……………………10分

的分布列为

0

1

2

3

p

0.504

0.398

0.092

0.006

  …………12分

19.(本小题满分12分)

解: (I)法一:取CC1的中点F, 连接AF, BF, 则AF∥C1D.

∠BAF为异面直线AB与C1D所成的角或其补角.……(1分)

∵△ABC为等腰直角三角形,

AC=2, ∴AB=2.又∵CC1=2, ∴AF=BF=

∴即异面直线AB与C1D所成的角为(4分)

法二:以C为坐标原点,CB,CA,CC1分别为x轴,y轴,z轴建立空间直角坐标系,则A(0,2,0),B(2,0,0),C1(0,0,2),D(0,2,1),∴=(2,-2,0),=(0,2,-1).

由于异面直线AB与C1D所成的角为向量的夹角或其补角.……(1分)

的夹角为θ,

,即异面直线AB与C1D

所成的角为…………(4分)

 

 

 

 

 

 

 

 

在三棱锥D―B1C1E中,

点C1到平面DB1E的距离为

B1E=, DE=, 又B1E⊥DE,

∴△DB1E的面积为

∴三棱锥C1―DB1E的体积为1.

…………(10分)

设点D到平面的距离为d,

在△中, B1C1=2, B1E=C1E=,

∴△B1C1E的面积为

, 即点D到平面的距离为.………(12分)

 

20.解:(I)由已知得:a2=  ,a3=   a4= 。        …………4分

(2)猜想a=。                                 …………6分

下面用数学归纳法证明:略。                             …………12分

21.本小题满分14分

    解:(I)设该学生从家出发,先乘船渡河到达公路上某一点P(x,0) (0≤x≤d),再乘公交车去学校,所用的时间为t,则.……3分

        令……………………………………………………5分

        且当…………………………………………………6分

        当……………………………………………………7分

        当时,所用的时间最短,最短时间为:

.………………………………9分

答:当d=2a时,该学生从家出发到达学校所用的最短时间是.

(II)由(I)的讨论可知,当d=上的减函数,所以当时,

即该学生直接乘船渡河到达公路上学校,所用的时间最短.……………………12分

最短的时间为………………………………………………14分

答:当时,该学生从家出发到达学校所用的最短时间是.

22.(1),由已知在[0,1]上大于等于0,在[1,2]上小于等于0.∴x=1为极大值点,

      …………4分

   (2)由,有三个相异实根,

                       …………8分

   (3)在[1,2]上为减函数,∴最大值为,∴只有上恒成立即可

恒成立,又

的最大值为-2,                    …………12分