7.当0<m<1时.z=对应的点位于A.第一象限 B.第二象限 C.第三象限 D.第四象限 查看更多

 

题目列表(包括答案和解析)

(本小题满分13分)已知函数

   (I)当0< a < b,且fa) = fb)时,求的值;

   (II)若存在实数aba<b),使得函数y=fx)的定义域为 [ab]时,值域为 [mamb](m≠0).求m的取值范围.

 

查看答案和解析>>

(本小题满分14分) 已知函数,(x>0).

(1)当0<a<b,且f(a)=f(b)时,求的值  ;   

(2)是否存在实数aba<b),使得函数y=f(x)的定义域、值域都是[ab],若存在,求出ab的值,若不存在,请说明理由.

(3)若存在实数aba<b),使得函数y=f(x)的定义域为 [ab]时,值域为 [mamb],(m≠0),求m的取值范围.

 

 

 

查看答案和解析>>

(14分)已知函数,( x>0).

(I)当0<a<b,且f(a)=f(b)时,求证:ab>1;

(II)是否存在实数a,b(a<b),使得函数y=f(x)的定义域、值域都是[a,b],若存在,则求出a,b的值,若不存在,请说明理由.

(III)若存在实数a,b(a<b),使得函数y=f(x)的定义域为 [a,b]时,值域为 [ma,mb]

(m≠0),求m的取值范围.

查看答案和解析>>

已知函数f(x)=mx3+nx2(m、n∈R ,m≠0)的图像在(2,f(2))处的切线与x轴平行.

(1)求n,m的关系式并求f(x)的单调减区间;

(2)证明:对任意实数0<x1<x2<1, 关于x的方程:

在(x1,x2)恒有实数解

(3)结合(2)的结论,其实我们有拉格朗日中值定理:若函数f(x)是在闭区间[a,b]上连续不断的函数,且在区间(a,b)内导数都存在,则在(a,b)内至少存在一点x0,使得.如我们所学过的指、对数函数,正、余弦函数等都符合拉格朗日中值定理条件.试用拉格朗日中值定理证明:

当0<a<b时,(可不用证明函数的连续性和可导性)

查看答案和解析>>

已知函数

(Ⅰ)若函数和函数在区间上均为增函数,求实数的取值范围;

(Ⅱ)若方程有唯一解,求实数的值.

【解析】第一问,   

当0<x<2时,,当x>2时,

要使在(a,a+1)上递增,必须

如使在(a,a+1)上递增,必须,即

由上得出,当上均为增函数

(Ⅱ)中方程有唯一解有唯一解

  (x>0)

随x变化如下表

x

-

+

极小值

由于在上,只有一个极小值,的最小值为-24-16ln2,

当m=-24-16ln2时,方程有唯一解得到结论。

(Ⅰ)解: 

当0<x<2时,,当x>2时,

要使在(a,a+1)上递增,必须

如使在(a,a+1)上递增,必须,即

由上得出,当上均为增函数  ……………6分

(Ⅱ)方程有唯一解有唯一解

  (x>0)

随x变化如下表

x

-

+

极小值

由于在上,只有一个极小值,的最小值为-24-16ln2,

当m=-24-16ln2时,方程有唯一解

 

查看答案和解析>>

一、选择题:

题号

1

2

3

4

5

6

7

8

9

10

11

12

答案

C

C

B

D

C

C

D

B

A

A

B

C

 

二、填空题:

13.2x    14. x=-1    15.k2=2.143  没有   16.(-∞,-3]

三、解答题:

17.(1)z=1+i    |z|=    (2分)

(2)a=0,b=1             (4分)

18.综合法、分析法均可(略)

19.(1)依题意有:解得a=1,b=-3(3分)

  (2)f(x)=x3-3x   f′(x)=3x2-3

当f′(x)>0,即x>1或x<-1,∴单调递增区间为(-∞,-1),(1,+∞)

当f′(x)>0,-1<x<1,∴单调递减区间为(-1,1)                   (5分)

20.(1)a1=,a2=,a3=,a4=       (2分)

(2)an=                         (3分)

(3)Sn=1-                    (5分)

21.解:依题意,直线斜率显然存在,设直线斜率为k,则直线的方程为:y+1=kx

抛物线y=-与直线相交于A、B两点

x2+2kx-2=0,∴△=4k2+8>0,

设A(x1,x2),B(x2,y2) 则x1+x2=-2k

∵kOA+KOB=1     ∴

即x1+x2=-2=-2k∴k=1

22.(1)a=1,b=3

  (2)∵f(x)=x3+3x2在[m,m+1]上单调递增

     ∴f′(x)=3x2+6x≥0,在[m,m+1]上

     ∵3x2+6x≥0, ∴x≥0或x≤-2

     ∴m+1≤-2或m≥0即m≤-3或m≥0

     ∴m的取值范围是{m|m≤-3或m≥0}

 


同步练习册答案