过曲线y=x2+x-2上点P0的切线平行于直线y=3x-1.则点P0坐标为A. (1.4) B. (0.2) C. D.(1.0) 查看更多

 

题目列表(包括答案和解析)

设C:y=x2(x>0)上的点为P0(x0,y0),在P0处作曲线C的切线与x轴交于Q1,过Q1作平行于y轴的直线与曲线C交于P1(x1,y1),然后在P1作曲线C的切线与x轴交于Q2,过Q2作平行于y轴的直线与曲线C交于P2(x2,y2),依此类推,作出以下各点:Q3,P3,…Qn,Pn….已知x0=2,则数{xn}的通项公式是
(
1
2
)n-1
(
1
2
)n-1

查看答案和解析>>

设C:y=x2(x>0)上的点为P0(x0,y0),在P0处作曲线C的切线与x轴交于Q1,过Q1作平行于y轴的直线与曲线C交于P1(x1,y1),然后在P1作曲线C的切线与x轴交于Q2,过Q2作平行于y轴的直线与曲线C交于P2(x2,y2),依此类推,作出以下各点:Q3,P3,…Qn,Pn….已知x0=2,则数{xn}的通项公式是______.

查看答案和解析>>

设C:y=x2(x>0)上的点为P0(x0,y0),在P0处作曲线C的切线与x轴交于Q1,过Q1作平行于y轴的直线与曲线C交于P1(x1,y1),然后在P1作曲线C的切线与x轴交于Q2,过Q2作平行于y轴的直线与曲线C交于P2(x2,y2),依此类推,作出以下各点:Q3,P3,…Qn,Pn….已知x0=2,则数{xn}的通项公式是________.

查看答案和解析>>

设C:y=x2(x>0)上的点为P0(x0,y0),过P0作曲线C的切线与x轴交于Q1,过Q1作平行于y轴的直线与曲线C交于P1(x1,y1),然后再过P1作曲线C的切线与x轴交于Q2,过Q2作平行于y轴的直线与曲线C交于P2(x2,y2),依次类推,作出以下各点:Q3,P3,…,Pn,Qn+1,….已知x0=2,设Pn(xn,yn)(n∈N).

(1)设xn=f(n),求f(n)的表达式;

(2)求g(n)=

(3)设Sn=[g(n)-4]log2f(n).若n>2,求证:-1≤<0.

查看答案和解析>>

P0(x0,y0)为曲线C:y=x2(x>0)上的点,过P0作曲线C的切线与x轴交于点Q1,过Ql作平行于y轴的直线与曲线C交于点P1(xl,y1),然后再过P1作曲线C的切线交x轴于点Q2,过Q2作平行于y轴的直线与曲线C交于点P2(x2,y2),依此类推,作出以下各点:P0,Q1P1,Q2P2,Q3,…,Pn,Qn+l,….已知x0=2,设Pn坐标为(xn,yn)(n∈N).

(1)求出过点P0的切线的方程;

(2)设xnf(n),求f(n)的表达式.

查看答案和解析>>

 

题号

1

2

3

4

5

6

7

8

9

10

11

12

答案

C

C

D

D

A

A

C

C

A

D

B

D

 

二、填空题:(本题每小题4分,共16分)

13。-1    14、-2    15、{x|-2<x<-1或0<x<1或2<x<3}      16、19kg.

 

三、解答题:(本题共76分)

17.(1)∵这辆汽车在第一、二个交通岗均未遇到红灯,而第三个交通岗遇到红灯

(2)

18.解(1)令则2bx2+x+a=0

       由题意知:x=1,2是上方程两根,由韦达定理:
                 ∴
      (2)由(1)知:
       令   解得:x<0或1<x<2
       ∴f(x)的单调增区间为(1,2)   减区间是(0,1)和(2,+
      (3)由(2)知:f(x)在x1=1处取极小值,在x2=2处取极大值。

19.(1)  

  (2)

 

 

 

 

 

 

 

 

 

20、(Ⅰ)由已知

(Ⅱ)由(Ⅰ)得

21、解:(1)2-≥0, 得≥0, x<-1或x≥1  即A=(-∞,-1)∪[1,+ ∞)

(2) 由(x-a-1)(2a-x)>0, 得(x-a-1)(x-2a)<0.

∵a<1,∴a+1>2a, ∴B=(2a,a+1).∵BA, ∴2a≥1或a+1≤-1, 即a≥或a≤-2, 而a<1,

≤a<1或a≤-2, 故当BA时, 实数a的取值范围是(-∞,-2)∪[,1]  

22、因为

是“西湖函数”.

 


同步练习册答案