提示:先分别求满足条件和的的取值范围.再利用复合命题的真假进行转化与讨论. 查看更多

 

题目列表(包括答案和解析)

(2008•成都三模)已知O为坐标原点,点E、F的坐标分别为(-
2
,0)、(
2
,0),点A、N满足
AE
=2
3
ON
=
1
2
(
OA
+
OF
)
,过点N且垂直于AF的直线交线段AE于点M,设点M的轨迹为C.
(1)求轨迹C的方程;
(2)若轨迹C上存在两点P和Q关于直线l:y=k(x+1)(k≠0)对称,求k的取值范围;
(3)在(2)的条件下,设直线l与轨迹C交于不同的两点R、S,对点B(1,0)和向量a=(-
3
,3k),求
BR
BS
-|a|2
取最大值时直线l的方程.

查看答案和解析>>

精英家教网如图,在椭圆C中,点F1是左焦点,A(a,0),B(0,b)分别为右顶点和上顶点,点O为椭圆的中心.又点P在椭圆上,且满足条件:OP∥AB,点H是点P在x轴上的射影.
(1)求证:当a取定值时,点H必为定点;
(2)如果点H落在左顶点与左焦点之间,试求椭圆离心率的取值范围;
(3)如果以OP为直径的圆与直线AB相切,且凸四边形ABPH的面积等于3+
2
,求椭圆的方程.

查看答案和解析>>

精英家教网已知椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)的一个焦点到长轴的两个端点的距离分别为2+
3
和2-
3

(1)求椭圆的方程;
(2)设过定点M(0,2)的直线l与椭圆C交于不同的两点A、B,且∠AOB为锐角(其中O为坐标原点),求直线l的斜率k的取值范围.
(3)如图,过原点O任意作两条互相垂直的直线与椭圆
x2
a2
+
y2
b2
=1
(a>b>0)交于P,S,R,Q四点,设原点O到四边形PQSR一边的距离为d,试求d=1时a,b满足的条件.

查看答案和解析>>

命题p:(t-1)2≥|a-b|,其中a,b满足条件:五个数18,20,22,a,b的平均数是20,标准差是
2

命题q:m≤t≤n,其中m,n满足条件:点M在椭圆
x2
4
+y2=1
上,定点A(1,0),m、n分别为线段AM长的最小值和最大值.
若命题“p或q”为真且命题“p且q”为假,求实数t的取值范围.

查看答案和解析>>

已知条件p:|x-1|>a(a≥0)和条件q:lg(x2-3x+3)>0,
(1)求满足条件p,q的不等式的解集.
(2)分别利用所给的两个条件作为A,B构造命题:“若A,则B”,问是否存在非负实数a使得构造的原命题为真命题,而其逆命题为假命题,若存在,求出a的取值范围.若不存在,请说明理由.

查看答案和解析>>


同步练习册答案