题目列表(包括答案和解析)
(本题12分)已知向量![]()
(1)求cos (![]()
)的值;
(2)若0<
<
,
<
<0,且sin
=
,求sin
.
(本题12分)已知数列
是等差数列,a2 = 3,a5 = 6,数列
的前n项和是Tn,且Tn +
.
(1)求数列
的通项公式与前n项的和Mn;
(2)求数列
的通项公式;
(3)记cn =
,求
的前n项和Sn.
(本题12分)在如图所示的四面体ABCD中,AB、BC、CD两两互相垂直,且BC=CD=1。(1)求证:平面ACD⊥平面ABC;(2)求二面角C-AB-D的大小。
![]()
![]()
(本题12分)设函数
的定义域为A,集合
,
(1)求
; (2)若
,求
的取值范围。
(本题12分)某研究所计划利用“神七”宇宙飞船进行新产品搭载实验,计划搭载新产品A、B,该所要根据该产品的研制成本、产品重量、搭载实验费用和预计产生收益来决定具体安排,通过调查,有关数据如下表:
| 产品A(件) | 产品B(件) | ||
| 研制成本、搭载费用之和(万元) | 20 | 30 | 计划最大资金额300万元 |
| 产品重量(千克) | 10 | 5 | 最大搭载重量110千克 |
| 预计收益(万元) | 80 | 60 |
如何安排这两种产品的件数进行搭载,才能使总预计收益达到最大,最大收益是多少?
一、选择题(每小题5分,共60 )
DCAAD BCBAB CB
二、填空题(每小题4分,共16分)
13.100 14.0 15.
16.B
三、解答题
17.
解
:
18.解:(Ⅰ)掷出点数x可能是:1,2,3,4.
则
分别得:
。于是
的所有取值分别为:0,1,4 .
因此
的所有取值为:0,1,2,4,5,8. …………………………………………2分
当
且
时,
可取得最大值8,
此时,
;
………………………………………………………4分
当
时且
时,
可取得最小值 0.
此时
…………………………………………………………6分
(Ⅱ)由(1)知
的所有取值为:0,1,2,4,5,8.
……………………………………………………………7分
当
时,
的所有取值为(2,3)、(4,3)、(3,2),(3,4)即
;
当
时,
的所有取值为(2,2)、(4,4)、(4,2),(2,4)即
…8分
当
时,
的所有取值为(1,3)、(3,1)即
;
当
时,
的所有取值为(1,2)、(2,1)、(1,4),(4,1)即
…9分
所以
的分布列为:

0
1
2
4
5
8







…
…………10分
即
的期望
………………12分
19.(本题12分)
解:(I)连接AO,
D1在底面AC的射影是O,
平面AC,…………2分
AO是AD1在平面AC的射影,
底面ABCD为矩形,
AB=2,AD=1,O是CD的中点,

…………4分
(II)过O作
,连接D

则
是二面角D1―AC―D的平面角。…………6分
平面AC,

与平面AC所成的角,

在


…………8分
(III)过C作
于N,
底面ABCD,底面ABCD是矩形。
平面DD1O,

平面ADD1,…………10分
线段CN的长即C到平面ADD1的距离。…………11分


所以C到平面ADD1的距离是
…………12分
解法二(II):由(I)知OA、OB、OD1两两垂直,以O为坐标原点,直线OA、OB、OD1分别为
轴,建立如图所示的空间直角坐标系
所以
|