题目列表(包括答案和解析)
(本小题13分)已知二次函数
(其中
)
(1)试讨论函数
的奇偶性.
(2)当
为偶函数时,若函数
,试证明:函数
在
上单调递减,在
上单调递增;
(本小题共13分)
已知函数
.
(Ⅰ)当
时,求
的单调递增区间;
(Ⅱ)若
在区间
上是减函数,求实数
的取值范围.
(本小题共13分)
已知函数
.
(Ⅰ)当
时,求
的单调递增区间;
(Ⅱ)若
在区间
上是减函数,求实数
的取值范围.
(本小题满分13分)
对于定义域为D的函数
,若同时满足下列条件:
①
在D内单调递增或单调递减;②存在区间[
]
,使
在[
]上的值域为[
];那么把
(
)叫闭函数
(1)求闭函数
符合条件②的区间[
];
(2)判断函数
是否为闭函数?并说明理由;
(3)若
是闭函数,求实数
的取值范围.
已知函数
.(
)
(1)若
在区间
上单调递增,求实数
的取值范围;
(2)若在区间
上,函数
的图象恒在曲线
下方,求
的取值范围.
【解析】第一问中,首先利用
在区间
上单调递增,则
在区间
上恒成立,然后分离参数法得到
,进而得到范围;第二问中,在区间
上,函数
的图象恒在曲线
下方等价于
在区间
上恒成立.然后求解得到。
解:(1)
在区间
上单调递增,
则
在区间
上恒成立. …………3分
即
,而当
时,
,故
.
…………5分
所以
.
…………6分
(2)令
,定义域为
.
在区间
上,函数
的图象恒在曲线
下方等价于
在区间
上恒成立.
∵
…………9分
① 若
,令
,得极值点
,
,
当
,即
时,在(
,+∞)上有
,此时
在区间
上是增函数,并且在该区间上有
,不合题意;
当
,即
时,同理可知,
在区间
上递增,
有
,也不合题意;
…………11分
② 若
,则有
,此时在区间
上恒有
,从而
在区间
上是减函数;
要使
在此区间上恒成立,只须满足![]()
,
由此求得
的范围是
. …………13分
综合①②可知,当
时,函数
的图象恒在直线
下方.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com