解得∴n=. 13分 查看更多

 

题目列表(包括答案和解析)

(本小题满分13分)

某校为了解学生的视力情况,随机抽查了一部分学生视力,将调查结果分组,分组区间为(3.9,4.2],(4.2,4.5],… ,(5.1,5.4].经过数据处理,得到如下频率分布表:

分组

频数

频率

(3.9,4.2]

3

0.06

(4.2,4.5]

6

0.12

(4.5,4.8]

25

x

(4.8,5.1]

y

z

(5.1,5.4]

2

0.04

合计

n

1.00

 

(I)求频率分布表中未知量n,x,y,z的值;

(II)从样本中视力在(3.9,4.2]和(5.1,5.4]的所有同学中随机抽取两人,求两人的视力差的绝对值低于0.5的概率.

查看答案和解析>>

为了了解某年级1000名学生的百米成绩情况,随机抽取了若干学生的百米成绩,成绩全部介于13秒与18秒之间,将成绩按如下方式分成五组:第一组[13,14);第二组[14,15);…;第五组[17,18].按上述分组方法得到的频率分布直方图如图所示,已知图中从左到右的前3个组的频率之比为3:8:19,且第二组的频数为8.
(1)请估计该年级学生中百米成绩在[16,17)内的人数;
(2)求调查中共随机抽取了多少个学生的百米成绩;
(3)若从第一、五组中随机取出两个学生的成绩,记为m,n,若m,n都在区间[13,14]上,则得4分,若m,n都在区间[17,18]上,则得2分,否则得0分,用X表示得分,求X的分布列并计算期望.

查看答案和解析>>

为了了解某年级1000名学生的百米成绩情况,随机抽取了若干学生的百米成绩,成绩全部介于13秒与18秒之间,将成绩按如下方式分成五组:第一组[13,14);第二组[14,15);…;第五组[17,18].按上述分组方法得到的频率分布直方图如图所示,已知图中从左到右的前3个组的频率之比为3:8:19,且第二组的频数为8.
(1)请估计该年级学生中百米成绩在[16,17)内的人数;
(2)求调查中共随机抽取了多少个学生的百米成绩;
(3)若从第一、五组中随机取出两个学生的成绩,记为m,n,若m,n都在区间[13,14]上,则得4分,若m,n都在区间[17,18]上,则得2分,否则得0分,用X表示得分,求X的分布列并计算期望.

查看答案和解析>>

(2012•安徽模拟)为了了解某年级1000名学生的百米成绩情况,随机抽取了若干学生的百米成绩,成绩全部介于13秒与18秒之间,将成绩按如下方式分成五组:第一组[13,14);第二组[14,15);…;第五组[17,18].按上述分组方法得到的频率分布直方图如图所示,已知图中从左到右的前3个组的频率之比为3:8:19,且第二组的频数为8.
(1)请估计该年级学生中百米成绩在[16,17)内的人数;
(2)求调查中共随机抽取了多少个学生的百米成绩;
(3)若从第一、五组中随机取出两个学生的成绩,记为m,n,若m,n都在区间[13,14]上,则得4分,若m,n都在区间[17,18]上,则得2分,否则得0分,用X表示得分,求X的分布列并计算期望.

查看答案和解析>>

(2012•河北模拟)某中学对高二甲、乙两个同类班级进行“加强‘语文阅读理解’训练的提高”数学应题“得分率”的试验,其中甲班为试验班(加强语文阅读理解训练〕,乙班为对比班(常规教学,无额外训练).在试验前的测试中,甲、乙两班学生在数学应用题上的得分率基本一致.试验结束后,统计几次数学应用题测试的平均成绩(均取整放)如下表所示:
61分以下 (61,70](分) (71,80](分) (81,90](分) (91,100](分)
甲班(人数) 3 6 11 18 12
乙班(人数) 4 8 13 15 10
现规定平均成绩在80分以上(不含80分)的为优秀
(Ⅰ)试分别估计两个班级的优秀率:
(Ⅱ)用以上统计数据填写下面2X2列联表,并问是否有75%的把握认为.加强“语史阅读理解”训练对提高“数学应题”得分率有帮助?
优秀人数 非优秀人数 总计
甲班
30
30
20
20
50
50
乙班
25
25
25
25
50
50
总计
55
55
45
45
100
100
参考个公式K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d
参考数据:
P(K2≥k0 0.40 0.25 0.10 0.010
k0 0.708 1.323 2.706 6.635

查看答案和解析>>


同步练习册答案