08 查看更多

 

题目列表(包括答案和解析)

(08年福建师大附中模拟)(14分)

已知点是离心率为的椭圆C:上的一点。斜率为直线BD交椭圆C于B、D两点,且A、B、D三点不重合

   (1)求椭圆C的方程;

   (2)面积是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由?

   (3)求证:直线、直线的斜率之和为定值.

查看答案和解析>>

(08年福建师大附中模拟)(12分)

设函数的定义域D,若对任意,都有,则称函数为“Storm”函数。已知函数的图像为曲线C,直线与曲线C相切于        

   (1)求的解析式;

   (2)设,若对 ,函数为“Storm”函数,求实数m的最小值.

查看答案和解析>>

(08年福建师大附中模拟)(12分)

已知数列满足

   (1)求的值; 

   (2)若数列为等差数列,请求出实数

   (3)求数列的通项及前项和.

查看答案和解析>>

(08年福建师大附中模拟)(本小题满分12分)

如图,在四棱锥中,底面是边长为2的正方形,侧面是正三角形,且平面平面为棱的中点

   (1)求证:平面

   (2)求二面角的大小;

   (3)求点到平面的距离.

 

 

查看答案和解析>>

(08年福建师大附中模拟)(12分)

某车间某两天内,每天都生产件产品,其中第一天生产了1件次品,第二天生产了2件次品,质检部每天要从生产的件产品中随意抽取4件进行检查,若发现有次品,则当天的产品不能通过。已知第一天通过检查的概率为

   (1)求的值

   (2)求两天都通过检查的概率

   (3)求两天中至少有一天通过检查的概率

查看答案和解析>>

一、选择题:本大题共有12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项正确的

 

题号

1

2

3

4

5

6

7

8

9

10

11

12

答案

C

D

C

D

D

A

B

B

C

B

A

C

 

二、填空题:本大题共4小题,每小题4分,共16分,把答案填在答题卡的相应位置。

13.(1,0)     14.       15.1      16.②③

三、解答题:本大题共6小题,共74分。解答应写出文字说明,证明过程或演算步骤。

17.(本小题满分12分)

 

   解:(Ⅰ)由

  

       

        ……………………………………4分

     又因为

     解得…………………………………………5分

     ………………………………………6分

(Ⅱ)在

 

        。……………………………………………9分

,

又由(Ⅰ)知

取得最大值时,为等边三角形. …………………………12分

 

 

18.(本小题满分12分)

解:(Ⅰ)设抽取的样本为名学生的成绩,

则由第一行中可知

②处的数值为;

③处的数值为…………4分

   (Ⅱ)成绩在[70,80分的学生频率为0.2,成绩在[80.90分的学生频率为0.32,

所以成绩在[70.90分的学生频率为0.52,……………………………………6分

由于有900名学生参加了这次竞赛,

所以成绩在[70.90分的学生约为(人)………………8分

   (Ⅲ)利用组中值估计平均为

…………12分

 

19.(本小题满分12分)

解:(I)由几何体的三视图可知,低面ABCD是边长为4的正方形,

,…………………………………3分

,

………………6分

   (Ⅱ)连

°

°

………………10分

 

……………………………………………………………………12分

 

20.(本小题满分12分)

解:(I)10年后新建住房总面积为

    。………………………3分

    设每年拆除的旧住房为………………5分

    解得,即每年拆除的旧住房面积是…………………………………6分

(Ⅱ)设第年新建住房面积为,则=

所以当;…………………………………………9分

   

……………………………………12分

 

21.(本小题满分12分)

解:(Ⅰ)由题意可知,可行域是以为顶点的三角形,因为

    故

    为直径的圆,

    故其方程为………………………………………………3分

    设椭圆的方程为

   

    又.

    故椭圆………………………………………5分

   (Ⅱ)直线始终与圆相切。

    设

    当

    若

               

    若

                

    即当……………………………7分

    当时,

   

    因此,点Q的坐标为

    ……………10分

   

    当

   

    综上,当,…………12分

 

22.(本小题满分14分)

解:(I)(1)

    。…………………………………………1分

    处取得极值,

    …………………………………………………2分

    即

    ………………………………………4分

   (ii)在

    由

          

          

   

    当;

    ;

    .……………………………………6分

    面

   

    且

    又

   

   

    ……………9分

   (Ⅱ)当

    ①

    ②当时,

   

   

    ③

    从面得;

    综上得,.………………………14分

 

 


同步练习册答案