题目列表(包括答案和解析)
在某校举行的数学竞赛中,全体参赛学生的竞赛成绩近似服从正态分布
。已知成绩在90分以上(含90分)的学生有12名。
(Ⅰ)、试问此次参赛学生总数约为多少人?
(Ⅱ)、若该校计划奖励竞赛成绩排在前50名的学生,试问设奖的分数线约为多少分?
可共查阅的(部分)标准正态分布表![]()
|
| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| 1.2 1.3 1.4 1.9 2.0 2.1 | 0.8849 0.9032 0.9192 0.9713 0.9772 0.9821 | 0.8869 0.9049 0.9207 0.9719 0.9778 0.9826 | 0.888 0.9066 0.9222 0.9726 0.9783 0.9830 | 0.8907 0.9082 0.9236 0.9732 0.9788 0.9834 | 0.8925 0.9099 0.9251 0.9738 0.9793 0.9838 | 0.8944 0.9115 0.9265 0.9744 0.9798 0.9842 | 0.8962 0.9131 0.9278 0.9750 0.9803 0.9846 | 0.8980 0.9147 0.9292 0.9756 0.9808 0.9850 | 0.8997 0.9162 0.9306 0.9762 0.9812 0.9854 | 0.9015 0.9177 0.9319 0.9767 0.9817 0.9857 |
点评:本小题主要考查正态分布,对独立事件的概念和标准正态分布的查阅,考查运用概率统计知识解决实际问题的能力。
在某校举行的数学竞赛中,全体参赛学生的竞赛成绩近似服从正态分布
。已知成绩在90分以上(含90分)的学生有12名。
(Ⅰ)、试问此次参赛学生总数约为多少人?
(Ⅱ)、若该校计划奖励竞赛成绩排在前50名的学生,试问设奖的分数线约为多少分?
可共查阅的(部分)标准正态分布表![]()
|
| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| 1.2 1.3 1.4 1.9 2.0 2.1 | 0.8849 0.9032 0.9192 0.9713 0.9772 0.9821 | 0.8869 0.9049 0.9207 0.9719 0.9778 0.9826 | 0.888 0.9066 0.9222 0.9726 0.9783 0.9830 | 0.8907 0.9082 0.9236 0.9732 0.9788 0.9834 | 0.8925 0.9099 0.9251 0.9738 0.9793 0.9838 | 0.8944 0.9115 0.9265 0.9744 0.9798 0.9842 | 0.8962 0.9131 0.9278 0.9750 0.9803 0.9846 | 0.8980 0.9147 0.9292 0.9756 0.9808 0.9850 | 0.8997 0.9162 0.9306 0.9762 0.9812 0.9854 | 0.9015 0.9177 0.9319 0.9767 0.9817 0.9857 |
| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
| 1.2 1.3 1.4 1.9 2.0 2.1 | 0.8849 0.9032 0.9192 0.9713 0.9772 0.9821 | 0.8869 0.9049 0.9207 0.9719 0.9778 0.9826 | 0.888 0.9066 0.9222 0.9726 0.9783 0.9830 | 0.8907 0.9082 0.9236 0.9732 0.9788 0.9834 | 0.8925 0.9099 0.9251 0.9738 0.9793 0.9838 | 0.8944 0.9115 0.9265 0.9744 0.9798 0.9842 | 0.8962 0.9131 0.9278 0.9750 0.9803 0.9846 | 0.8980 0.9147 0.9292 0.9756 0.9808 0.9850 | 0.8997 0.9162 0.9306 0.9762 0.9812 0.9854 | 0.9015 0.9177 0.9319 0.9767 0.9817 0.9857 |
(1)试问此次参赛的学生总数约为多少人?
(2)若该校计划奖励竞赛成绩排在前50名的学生,试问设奖的分数线约为多少分?
可供查阅的(部分)标准正态分布表φ(x0)=p(x<x0)
x0 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
1.2 | 0.8849 | 0.8869 | 0.8888 | 0.8907 | 0.8925 | 0.8944 | 0.8962 | 0.8980 | 0.8997 | 0.9915 |
1.3 | 0.9032 | 0.9049 | 0.9066 | 0.9082 | 0.9099 | 0.9115 | 0.9131 | 0.9147 | 0.9162 | 0.9177 |
1.4 | 0.9192 | 0.9207 | 0.9222 | 0.9236 | 0.9251 | 0.9265 | 0.9278 | 0.9292 | 0.9306 | 0.9316 |
1.9 | 0.9713 | 0.9719 | 0.9726 | 0.9732 | 0.9738 | 0.9744 | 0.9750 | 0.9756 | 0.9762 | 0.9767 |
2.0 | 0.9772 | 0.9778 | 0.9783 | 0.9788 | 0.9793 | 0.9798 | 0.9803 | 0.9808 | 0.9812 | 0.9817 |
2.1 | 0.9821 | 0.9826 | 0.9380 | 0.9834 | 0.9838 | 0.9842 | 0.9846 | 0.9850 | 0.9854 | 0.9857 |
(本小题满分12分)
若
,则
,![]()
,
.在2010年黄冈中学理科实验班招生考试中,有5000人参加考试,考生的数学成绩服
.
(Ⅰ)在5000名考生中,数学分数在
之间的考生约有多少人;
(Ⅱ)若对数学分数从高到低的前114名考生予以录取,问录取分数线为多少?
一、选择题:本大题共有12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项正确的
题号
1
2
3
4
5
6
7
8
9
10
11
12
答案
C
D
C
D
D
A
B
B
C
B
A
C
二、填空题:本大题共4小题,每小题4分,共16分,把答案填在答题卡的相应位置。
13.(1,0) 14.
15.1 16.②③
三、解答题:本大题共6小题,共74分。解答应写出文字说明,证明过程或演算步骤。
17.(本小题满分12分)
解:(Ⅰ)由


……………………………………4分
又因为
解得
…………………………………………5分
………………………………………6分
(Ⅱ)在
,

。……………………………………………9分
,
即
,
又由(Ⅰ)知
故
取得最大值时,
为等边三角形. …………………………12分
18.(本小题满分12分)
解:(Ⅰ)设抽取的样本为
名学生的成绩,
则由第一行中可知
;
②处的数值为
;
③处的数值为
…………4分
(Ⅱ)成绩在[70,80
分的学生频率为0.2,成绩在[80.90
分的学生频率为0.32,
所以成绩在[70.90
分的学生频率为0.52,……………………………………6分
由于有900名学生参加了这次竞赛,
所以成绩在[70.90
分的学生约为
(人)………………8分
(Ⅲ)利用组中值估计平均为
…………12分
19.(本小题满分12分)
解:(I)由几何体的三视图可知,低面ABCD是边长为4的正方形,
,…………………………………3分
且
,
………………6分
(Ⅱ)连
,
,
°

°
………………10分
又

……………………………………………………………………12分
20.(本小题满分12分)
解:(I)10年后新建住房总面积为
。………………………3分
设每年拆除的旧住房为
………………5分
解得
,即每年拆除的旧住房面积是
…………………………………6分
(Ⅱ)设第
年新建住房面积为
,则
=
所以当
;…………………………………………9分
当


故
……………………………………12分
21.(本小题满分12分)
解:(Ⅰ)由题意可知,可行域是以
为顶点的三角形,因为
,
故
,
为直径的圆,
故其方程为
………………………………………………3分
设椭圆
的方程为
,

又
.
故椭圆
………………………………………5分
(Ⅱ)直线
始终与圆
相切。
设
。
当
。
若
;
若
;
即当
……………………………7分
当
时,
,

。
因此,点Q的坐标为
。
……………10分

当
,
。
综上,当
,…………12分
22.(本小题满分14分)
解:(I)(1)
,
。…………………………………………1分
处取得极值,
…………………………………………………2分
即
………………………………………4分
(ii)在
,
由

,

;
当
;

;
.……………………………………6分
面
,
且
又
,

……………9分
(Ⅱ)当
,
①
;
②当
时,
,

③
,
从面得
;
综上得,
.………………………14分
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com