(Ⅱ)成绩在分的学生约为多少人?(Ⅲ)估计总体平均数, 查看更多

 

题目列表(包括答案和解析)

在某校举行的数学竞赛中,全体参赛学生的竞赛成绩近似服从正态分布。已知成绩在90分以上(含90分)的学生有12名。

(Ⅰ)、试问此次参赛学生总数约为多少人?

(Ⅱ)、若该校计划奖励竞赛成绩排在前50名的学生,试问设奖的分数线约为多少分?

可共查阅的(部分)标准正态分布表

0

1

2

3

4

5

6

7

8

9

1.2

1.3

1.4

1.9

2.0

2.1

0.8849

0.9032

0.9192

0.9713

0.9772

0.9821

0.8869

0.9049

0.9207

0.9719

0.9778

0.9826

0.888

0.9066

0.9222

0.9726

0.9783

0.9830

0.8907

0.9082

0.9236

0.9732

0.9788

0.9834

0.8925

0.9099

0.9251

0.9738

0.9793

0.9838

0.8944

0.9115

0.9265

0.9744

0.9798

0.9842

0.8962

0.9131

0.9278

0.9750

0.9803

0.9846

0.8980

0.9147

0.9292

0.9756

0.9808

0.9850

0.8997

0.9162

0.9306

0.9762

0.9812

0.9854

0.9015

0.9177

0.9319

0.9767

0.9817

0.9857

点评:本小题主要考查正态分布,对独立事件的概念和标准正态分布的查阅,考查运用概率统计知识解决实际问题的能力。

查看答案和解析>>

在某校举行的数学竞赛中,全体参赛学生的竞赛成绩近似服从正态分布。已知成绩在90分以上(含90分)的学生有12名。

(Ⅰ)、试问此次参赛学生总数约为多少人?

(Ⅱ)、若该校计划奖励竞赛成绩排在前50名的学生,试问设奖的分数线约为多少分?

可共查阅的(部分)标准正态分布表

0

1

2

3

4

5

6

7

8

9

1.2 1.3 1.4 1.9 2.0 2.1

0.8849 0.9032 0.9192 0.9713 0.9772 0.9821

0.8869 0.9049 0.9207 0.9719 0.9778 0.9826

0.888 0.9066 0.9222 0.9726 0.9783 0.9830

0.8907 0.9082 0.9236 0.9732 0.9788 0.9834

0.8925 0.9099 0.9251 0.9738 0.9793 0.9838

0.8944 0.9115 0.9265 0.9744 0.9798 0.9842

0.8962 0.9131 0.9278 0.9750 0.9803 0.9846

0.8980 0.9147 0.9292 0.9756 0.9808 0.9850

0.8997 0.9162 0.9306 0.9762 0.9812 0.9854

0.9015 0.9177 0.9319 0.9767 0.9817 0.9857

 

查看答案和解析>>

在某校举行的数学竞赛中,全体参赛学生的竞赛成绩近似服从正态分布。已知成绩在90分以上(含90分)的学生有12名。
(1)、试问此次参赛学生总数约为多少人?
(2)、若该校计划奖励竞赛成绩排在前50名的学生,试问设奖的分数线约为多少分?
可供查阅的(部分)标准正态分布表

0
1
2
3
4
5
6
7
8
9
1.2
1.3
1.4
1.9
2.0
2.1
0.8849
0.9032
0.9192
0.9713
0.9772
0.9821
0.8869
0.9049
0.9207
0.9719
0.9778
0.9826
0.888
0.9066
0.9222
0.9726
0.9783
0.9830
0.8907
0.9082
0.9236
0.9732
0.9788
0.9834
0.8925
0.9099
0.9251
0.9738
0.9793
0.9838
0.8944
0.9115
0.9265
0.9744
0.9798
0.9842
0.8962
0.9131
0.9278
0.9750
0.9803
0.9846
0.8980
0.9147
0.9292
0.9756
0.9808
0.9850
0.8997
0.9162
0.9306
0.9762
0.9812
0.9854
0.9015
0.9177
0.9319
0.9767
0.9817
0.9857
 

查看答案和解析>>

在某校举行的数学竞赛中,全体参赛学生的竞赛成绩近似服从正态分布N(70,100).已知成绩在90分以上(含90分)的学生有12名.

(1)试问此次参赛的学生总数约为多少人?

(2)若该校计划奖励竞赛成绩排在前50名的学生,试问设奖的分数线约为多少分?

可供查阅的(部分)标准正态分布表φ(x0)=p(x<x0)

x0

0

1

2

3

4

5

6

7

8

9

1.2

0.8849

0.8869

0.8888

0.8907

0.8925

0.8944

0.8962

0.8980

0.8997

0.9915

1.3

0.9032

0.9049

0.9066

0.9082

0.9099

0.9115

0.9131

0.9147

0.9162

0.9177

1.4

0.9192

0.9207

0.9222

0.9236

0.9251

0.9265

0.9278

0.9292

0.9306

0.9316

1.9

0.9713

0.9719

0.9726

0.9732

0.9738

0.9744

0.9750

0.9756

0.9762

0.9767

2.0

0.9772

0.9778

0.9783

0.9788

0.9793

0.9798

0.9803

0.9808

0.9812

0.9817

2.1

0.9821

0.9826

0.9380

0.9834

0.9838

0.9842

0.9846

0.9850

0.9854

0.9857

查看答案和解析>>

(本小题满分12分)

,则

.在2010年黄冈中学理科实验班招生考试中,有5000人参加考试,考生的数学成绩服

(Ⅰ)在5000名考生中,数学分数在之间的考生约有多少人;

(Ⅱ)若对数学分数从高到低的前114名考生予以录取,问录取分数线为多少?

 

查看答案和解析>>

一、选择题:本大题共有12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项正确的

 

题号

1

2

3

4

5

6

7

8

9

10

11

12

答案

C

D

C

D

D

A

B

B

C

B

A

C

 

二、填空题:本大题共4小题,每小题4分,共16分,把答案填在答题卡的相应位置。

13.(1,0)     14.       15.1      16.②③

三、解答题:本大题共6小题,共74分。解答应写出文字说明,证明过程或演算步骤。

17.(本小题满分12分)

 

   解:(Ⅰ)由

  

       

        ……………………………………4分

     又因为

     解得…………………………………………5分

     ………………………………………6分

(Ⅱ)在

 

        。……………………………………………9分

,

又由(Ⅰ)知

取得最大值时,为等边三角形. …………………………12分

 

 

18.(本小题满分12分)

解:(Ⅰ)设抽取的样本为名学生的成绩,

则由第一行中可知

②处的数值为;

③处的数值为…………4分

   (Ⅱ)成绩在[70,80分的学生频率为0.2,成绩在[80.90分的学生频率为0.32,

所以成绩在[70.90分的学生频率为0.52,……………………………………6分

由于有900名学生参加了这次竞赛,

所以成绩在[70.90分的学生约为(人)………………8分

   (Ⅲ)利用组中值估计平均为

…………12分

 

19.(本小题满分12分)

解:(I)由几何体的三视图可知,低面ABCD是边长为4的正方形,

,…………………………………3分

,

………………6分

   (Ⅱ)连

°

°

………………10分

 

……………………………………………………………………12分

 

20.(本小题满分12分)

解:(I)10年后新建住房总面积为

    。………………………3分

    设每年拆除的旧住房为………………5分

    解得,即每年拆除的旧住房面积是…………………………………6分

(Ⅱ)设第年新建住房面积为,则=

所以当;…………………………………………9分

   

……………………………………12分

 

21.(本小题满分12分)

解:(Ⅰ)由题意可知,可行域是以为顶点的三角形,因为

    故

    为直径的圆,

    故其方程为………………………………………………3分

    设椭圆的方程为

   

    又.

    故椭圆………………………………………5分

   (Ⅱ)直线始终与圆相切。

    设

    当

    若

               

    若

                

    即当……………………………7分

    当时,

   

    因此,点Q的坐标为

    ……………10分

   

    当

   

    综上,当,…………12分

 

22.(本小题满分14分)

解:(I)(1)

    。…………………………………………1分

    处取得极值,

    …………………………………………………2分

    即

    ………………………………………4分

   (ii)在

    由

          

          

   

    当;

    ;

    .……………………………………6分

    面

   

    且

    又

   

   

    ……………9分

   (Ⅱ)当

    ①

    ②当时,

   

   

    ③

    从面得;

    综上得,.………………………14分

 

 


同步练习册答案