(Ⅰ)求四棱锥的体积, 查看更多

 

题目列表(包括答案和解析)

四棱锥P-ABCD的三视图如图所示.
(1)在四凌锥中,E为线段PD的中点,求证:PB∥平面AEC;
(2)在四凌锥中,F为线段PA上的点,且
PFFA
,则λ为何值时,PA⊥平面DBF?并求此时几何体F-BDC的体积.

查看答案和解析>>

四棱锥P-ABCD中,底面ABCD是边长为2a的正方形,各侧棱均与底面边长相等,E、F分别是PA、PC的中点.
(1)求证:PC∥平面BDE;
(2)求证:平面BDE丄平面BDF;
(3)求四面体E-BDF的体积.

查看答案和解析>>

四棱锥P-ABCD中,底面ABCD是边长为2a的正方形,各侧棱均与底面边长相等,E、F分别是PA、PC的中点.
(1)求证:PC∥平面BDE;
(2)求证:平面BDE丄平面BDF;
(3)求四面体E-BDF的体积.

查看答案和解析>>

精英家教网在四棱锥P-ABCD中,底面ABCD是矩形,侧棱PA⊥底面ABCD,AB=1,直线PB与底面ABCD所成的角为45°,四棱锥P-ABCD的体积V=
23
,E为PB的中点,点F在棱BC上移动.
(1)求证:PF⊥AE;
(2)当F为BC中点时,求点F到平面BDP的距离;
(3)在侧面PAD内找一点G,使GE⊥平面PAC.

查看答案和解析>>

在四棱锥P-ABCD中,底面ABCD是矩形,PA=AD=4,AB=2,PB=2
5
,PD=4
2
.E是PD的中点.
(1)求证:AE⊥平面PCD;
(2)求平面ACE与平面ABCD所成二面角的余弦值;
(3)在线段BC上是否存在点F,使得三棱锥F-ACE的体积恰为
4
3
,若存在,试确定点F的位置;若不存在,请说明理由.
精英家教网

查看答案和解析>>

一、选择题:本大题共有12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项正确的

 

题号

1

2

3

4

5

6

7

8

9

10

11

12

答案

C

D

C

D

D

A

B

B

C

B

A

C

 

二、填空题:本大题共4小题,每小题4分,共16分,把答案填在答题卡的相应位置。

13.(1,0)     14.       15.1      16.②③

三、解答题:本大题共6小题,共74分。解答应写出文字说明,证明过程或演算步骤。

17.(本小题满分12分)

 

   解:(Ⅰ)由

  

       

        ……………………………………4分

     又因为

     解得…………………………………………5分

     ………………………………………6分

(Ⅱ)在

 

        。……………………………………………9分

,

又由(Ⅰ)知

取得最大值时,为等边三角形. …………………………12分

 

 

18.(本小题满分12分)

解:(Ⅰ)设抽取的样本为名学生的成绩,

则由第一行中可知

②处的数值为;

③处的数值为…………4分

   (Ⅱ)成绩在[70,80分的学生频率为0.2,成绩在[80.90分的学生频率为0.32,

所以成绩在[70.90分的学生频率为0.52,……………………………………6分

由于有900名学生参加了这次竞赛,

所以成绩在[70.90分的学生约为(人)………………8分

   (Ⅲ)利用组中值估计平均为

…………12分

 

19.(本小题满分12分)

解:(I)由几何体的三视图可知,低面ABCD是边长为4的正方形,

,…………………………………3分

,

………………6分

   (Ⅱ)连

°

°

………………10分

 

……………………………………………………………………12分

 

20.(本小题满分12分)

解:(I)10年后新建住房总面积为

    。………………………3分

    设每年拆除的旧住房为………………5分

    解得,即每年拆除的旧住房面积是…………………………………6分

(Ⅱ)设第年新建住房面积为,则=

所以当;…………………………………………9分

   

……………………………………12分

 

21.(本小题满分12分)

解:(Ⅰ)由题意可知,可行域是以为顶点的三角形,因为

    故

    为直径的圆,

    故其方程为………………………………………………3分

    设椭圆的方程为

   

    又.

    故椭圆………………………………………5分

   (Ⅱ)直线始终与圆相切。

    设

    当

    若

               

    若

                

    即当……………………………7分

    当时,

   

    因此,点Q的坐标为

    ……………10分

   

    当

   

    综上,当,…………12分

 

22.(本小题满分14分)

解:(I)(1)

    。…………………………………………1分

    处取得极值,

    …………………………………………………2分

    即

    ………………………………………4分

   (ii)在

    由

          

          

   

    当;

    ;

    .……………………………………6分

    面

   

    且

    又

   

   

    ……………9分

   (Ⅱ)当

    ①

    ②当时,

   

   

    ③

    从面得;

    综上得,.………………………14分

 

 


同步练习册答案