(Ⅱ)直线交双曲线C的渐近线.于 查看更多

 

题目列表(包括答案和解析)

已知双曲线C的渐近线方程为数学公式,右焦点F(c,0)到渐近线的距离为数学公式
(1)求双曲线C的方程;
(2)过F作斜率为k的直线l交双曲线于A、B两点,线段AB的中垂线交x轴于D,求证:数学公式为定值.

查看答案和解析>>

已知双曲线C的渐近线方程为,右焦点F(c,0)到渐近线的距离为
(1)求双曲线C的方程;
(2)过F作斜率为k的直线l交双曲线于A、B两点,线段AB的中垂线交x轴于D,求证:为定值.

查看答案和解析>>

双曲线C的中心在原点,右焦点为数学公式,渐近线方程为数学公式
(Ⅰ)求双曲线C的方程;
(Ⅱ)设直线l:y=kx+1与双曲线C交于A、B两点,问:当k为何值时,以AB为直径的圆过原点.

查看答案和解析>>

双曲线C的中心在原点,右焦点为,渐近线方程为
(Ⅰ)求双曲线C的方程;
(Ⅱ)设直线l:y=kx+1与双曲线C交于A、B两点,问:当k为何值时,以AB为直径的圆过原点.

查看答案和解析>>

如图所示,直线与双曲线C:的渐近线交于两点,记.任取双曲线C上的点,若),则满足的一个等式是        .

查看答案和解析>>

.选择题:

1

2

3

4

5

6

7

8

9

10

11

12

B

D

A

D

C

D

A

C

B

A

C

B

.填空题:

13. 7 ;14.;15. ;16①②③④

三.解答题:

18. 记第一、二、三次射击命中目标分别为事件A,B,C三次均未命中目标的事件为D.依题意. 设在处击中目标的概率为,则,由

,所以, 2分  

5 分

(Ⅰ)由于各次射击都是独立的,所以该射手在三次射击击中目标的概率为

.  8分

 

(Ⅱ)依题意,设射手甲得分为,则

,所以的分布列为

所以。    12分

 

 

 

20. (Ⅰ)证明:连结于点,连结.

在正三棱柱中,四边形是平行四边形,

.

.   ………………………2分

      ∵平面平面

∥平面.       …………………………4分

 

(Ⅱ)过点,过点,连结.

∵平面平面平面,平面平面

      ∴平面.

在平面内的射影.

.

是二面角的平面角.  

在直角三角形中,.

同理可求: .

.

.   …………………………12分

 

21.(Ⅰ),令,解得,1分   

时,为增函数;当为减函数;当为增函数。4分  时,取得极大值为-4,当时,取处极小值为。…………………………6分

(Ⅱ)设上恒成立.

,,若,显然。 8分   若,

,令,解得,或,当时,

,当时,.10分  

 当时,.

,解不等式得,,当时,

满足题意.综上所述的范围为…………...12分

 

 

 


同步练习册答案