题目列表(包括答案和解析)
若
,则![]()
( )
A.2 B.1 C.
D. 无法确定
已知
,则
的大小关系是
A.
B.
C.
D.无法确定
下列说法一定正确的是( )
A.一名篮球运动员,号称“百发百中”,若罚球三次,不会出现三投都不中的情况
B.一枚硬币掷一次得到正面的概率是
,那么掷两次一定会出现一次正面的情况
C.如买彩票中奖的概率是万分之一,则买一万元的彩票一定会中奖一元
D.随机事件发生的概率与试验次数无关
下列说法不正确的是( )
A. 空间中,一组对边平行且相等的四边形是一定是平行四边形;
B.同一平面的两条垂线一定共面;
C. 过直线上一点可以作无数条直线与这条直线垂直,且这些直线都在同一个平面内;
D. 过一条直线有且只有一个平面与已知平面垂直.
一.选择题:
1
2
3
4
5
6
7
8
9
10
11
12
B
B
A
D
C
D
C
C
D
C
C
B
二.填空题:
13. 1600 ;14.7;15. 14;16①②③④
三.解答题:
17.(本题满分10分)(Ⅰ)

(Ⅱ)

所以
的最大值为
18.记小张能过第一关的事件为A,直接去闯第二关能通过的事件为B,直接去闯第三关能通过的事件为C. 2分
则P(A)=0.8,P(B)=0.75,P(C)=0.5
(Ⅰ)小张在第二关被淘汰的概率为P(A?
)=P(A)?(1-P(B))
=0.8×0.25=0.2.
答:小张在第二关被淘汰的概率为0.2 7分
(Ⅱ)小张不能参加决赛的概率为P=1-P(A?B?C)=1-0.8×0.75×0.5=0.7
答:小张不能参加决赛的概率为
19.(Ⅰ)设等差数列
的公差为d(d
0).
成等比数列,
即
,化简得
,注意到
,
,
6分,
(Ⅱ)
=9,
,
。
。
12分。
20.(Ⅰ)证明:连结
交
于点
,连结
.
在正三棱柱
中,四边形
是平行四边形,
∴
.
∵
,
∴
∥
. ……………………………2分
∵
平面
,
平面
,
∴
∥平面
. …………………………4分
(Ⅱ)过点
作
交
于
,过点
作
交
于
,连结
.
∵平面
平面
,
平面
,平面
平面
,
∴
平面
.
∴
是
在平面
内的射影.
∴
.
∴
是二面角
的平面角.
在直角三角形
中,
.
同理可求:
.
∴
.
∵
,
∴
.
……………………12分
21.(Ⅰ)
,依题意得
,即
,
. 2分 ,
,
,
5分
(Ⅱ)令
得
.,
,
.因此,当
时,
8分
要使得不等式
对于
恒成立,只需
.则
.故存在最小的正整数
,使得不等式
对于
恒成立.

\

(Ⅱ)




湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com