题目列表(包括答案和解析)
如图,
是△
的重心,
、
分别是边
、
上的动点,且
、
、
三点共线.
(1)设
,将
用
、
、
表示;
(2)设
,
,证明:
是定值;
(3)记△
与△
的面积分别为
、
.求
的取值范围.
(提示:![]()
![]()
【解析】第一问中利用(1)![]()
![]()
第二问中,由(1),得
;①
另一方面,∵
是△
的重心,
∴![]()
而
、
不共线,∴由①、②,得![]()
第三问中,![]()
由点
、
的定义知
,
,
且
时,
;
时,
.此时,均有
.
时,
.此时,均有
.
以下证明:
,结合作差法得到。
解:(1)![]()
.
(2)一方面,由(1),得
;①
另一方面,∵
是△
的重心,
∴
. ②
而
、
不共线,∴由①、②,得
解之,得
,∴
(定值).
(3)
.
由点
、
的定义知
,
,
且
时,
;
时,
.此时,均有
.
时,
.此时,均有
.
以下证明:
.(法一)由(2)知
,
∵
,∴
.
∵
,∴
.
∴
的取值范围![]()
设椭圆
的左、右顶点分别为
,点
在椭圆上且异于
两点,
为坐标原点.
(Ⅰ)若直线
与
的斜率之积为
,求椭圆的离心率;
(Ⅱ)若
,证明直线
的斜率
满足![]()
【解析】(1)解:设点P的坐标为
.由题意,有
①
由
,得
,![]()
由
,可得
,代入①并整理得![]()
由于
,故
.于是
,所以椭圆的离心率![]()
(2)证明:(方法一)
依题意,直线OP的方程为
,设点P的坐标为
.
由条件得
消去
并整理得
②
由
,
及
,
得
.
整理得
.而
,于是
,代入②,
整理得![]()
由
,故
,因此
.
所以
.
(方法二)
依题意,直线OP的方程为
,设点P的坐标为
.
由P在椭圆上,有![]()
因为
,
,所以
,即
③
由
,
,得
整理得
.
于是
,代入③,
整理得![]()
解得
,
所以
.
【解析】如图:|OB|=b,|O F1|=c.∴kPQ=
,kMN=﹣
.
直线PQ为:y=
(x+c),两条渐近线为:y=
x.由
,得:Q(
,
);由
,得:P(
,
).∴直线MN为:y-
=﹣
(x-
),
令y=0得:xM=
.又∵|MF2|=|F1F2|=2c,∴3c=xM=
,解之得:
,即e=
.
【答案】B
| k |
| x+a |
| x+b |
| x+c |
| 1 |
| 3 |
| 1 |
| 2 |
| kx |
| ax+1 |
| bx+1 |
| cx+1 |
| (c×2-bx+a) |
| x2 |
| 1 |
| x |
| b |
| x |
| 1 |
| x |
| 1 |
| x |
| 1 |
| 2 |
| 1 |
| 2 |
| b |
| (x+a) |
| (x+c) |
| (x+d) |
| bx |
| (ax-1) |
| (cx-1) |
| (dx-1) |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 3 |
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com