题目列表(包括答案和解析)
已知函数
,
是
的一个零点,又
在
处有极值,在区间
和
上是单调的,且在这两个区间上的单调性相反.(1)求
的取值范围;(2)当
时,求使
成立的实数
的取值范围.
从而
或
即
或![]()
所以存在实数
,满足题目要求.……………………12分
| e1 |
| e2 |
| e1 |
| e2 |
| e1 |
| e2 |
| π |
| 3 |
| e1 |
| e2 |
| e1 |
| e2 |
| 1 |
| 2 |
| 1 |
| 4 |
(考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评分)
A.(不等式选做题)若不等式
对任意
R恒成立,则
的取值范围是
.
B.(几何证明选做题)如图,∠B=∠D,
,
,且AB=6,AC=4,AD=12,则AE= .
![]()
C.(坐标系与参数方程选做题)直角坐标系
中,以原点O为极点,
轴的正半轴为极轴建立极坐标系,设点A,B分别在曲线
:
(
为参数)和曲线
:
上,则
的最小值为
.
|
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com