解:(Ⅰ)由可得----2分 查看更多

 

题目列表(包括答案和解析)

解:因为有负根,所以在y轴左侧有交点,因此

解:因为函数没有零点,所以方程无根,则函数y=x+|x-c|与y=2没有交点,由图可知c>2


 13.证明:(1)令x=y=1,由已知可得f(1)=f(1×1)=f(1)f(1),所以f(1)=1或f(1)=0

若f(1)=0,f(0)=f(1×0)=f(1)f(0)=0,所以f(1)=f(0)与已知条件“”矛盾所以f(1)≠0,因此f(1)=1,所以f(1)-1=0,1是函数y=f(x)-1的零点

(2)因为f(1)=f[(-1)×(-1)]=f2(-1)=,所以f(-1)=±1,但若f(-1)=1,则f(-1)=f(1)与已知矛盾所以f(-1)不能等于1,只能等于-1。所以任x∈R,f(-x)=f(-1)f(x)=-f(x),因此函数是奇函数

数字1,2,3,4恰好排成一排,如果数字i(i=1,2,3,4)恰好出现在第i个位置上则称有一个巧合,求巧合数的分布列。

查看答案和解析>>

(本题16分)已知函数,其中e是自然数的底数,

(1)当时,解不等式

(2)若当时,不等式恒成立,求a的取值范围;

(3)当时,试判断:是否存在整数k,使得方程

   上有解?若存在,请写出所有可能的k的值;若不存在,说明理由。

 

查看答案和解析>>

(本小题满分12分)学数学,其实是要使人聪明,使人的思维更加缜密,在美国广为流传的一道数学题目是:老板给你两个加工资的方案。一是每年年末加一千元;二是每半年结束时加300元。请选择一种。一般不擅长数学的人很容易选择前者,因为一年加一千元总比两个半年共加600元要多。其实,由于工资累计的,时间稍长,往往第二种方案更有利。例如在第二年的年末,依第一种方案可以加得1000+2000=3000元,而第二种方案在第一年加得300+600=900元,第二年加得900+1200=2100元,总数也是900+2100=3000元。但到了第三年,第一种方案可以得到1000+2000+3000=6000元,第二种方案可以得到300+600+900+1200+1500+1800=6300元,比第一方案多了300元。第四年,第五年会更多。因此,你若会在公司干三年以上,则应选择第二种方案。

根据以上材料,解答以下问题:
  (1)如果在该公司干10年,问选择第二方案比选择第一方案多加薪多少元?
  (2)如果第二方案中得每半年加300元改成每半年加 元,问 取何值时,选                                 择第二方案总是比选择第一方案多加薪?

查看答案和解析>>

(本题16分)已知函数,其中e是自然数的底数,
(1)当时,解不等式
(2)若当时,不等式恒成立,求a的取值范围;
(3)当时,试判断:是否存在整数k,使得方程
上有解?若存在,请写出所有可能的k的值;若不存在,说明理由。

查看答案和解析>>

设椭圆 )的一个顶点为分别是椭圆的左、右焦点,离心率 ,过椭圆右焦点 的直线  与椭圆 交于 , 两点.

(1)求椭圆的方程;

(2)是否存在直线 ,使得 ,若存在,求出直线  的方程;若不存在,说明理由;

【解析】本试题主要考查了椭圆的方程的求解,以及直线与椭圆的位置关系的运用。(1)中椭圆的顶点为,即又因为,得到,然后求解得到椭圆方程(2)中,对直线分为两种情况讨论,当直线斜率存在时,当直线斜率不存在时,联立方程组,结合得到结论。

解:(1)椭圆的顶点为,即

,解得椭圆的标准方程为 --------4分

(2)由题可知,直线与椭圆必相交.

①当直线斜率不存在时,经检验不合题意.                    --------5分

②当直线斜率存在时,设存在直线,且.

,       ----------7分

,               

   = 

所以,                               ----------10分

故直线的方程为 

 

查看答案和解析>>


同步练习册答案