所以点N在定直线上 查看更多

 

题目列表(包括答案和解析)

点P在以F1,F2为焦点的双曲线E:
x2
a2
-
y2
b2
=1
(a>0,b>0)上,已知PF1⊥PF2,|PF1|=2|PF2|,O为坐标原点.
(Ⅰ)求双曲线的离心率e;
(Ⅱ)过点P作直线分别与双曲线渐近线相交于P1,P2两点,且
OP1
OP2
=-
27
4
2
PP1
+
PP2
=
0
,求双曲线E的方程;
(Ⅲ)若过点Q(m,0)(m为非零常数)的直线l与(2)中双曲线E相交于不同于双曲线顶点的两点M、N,且
MQ
QN
(λ为非零常数),问在x轴上是否存在定点G,使
F1F2
⊥(
GM
GN
)
?若存在,求出所有这种定点G的坐标;若不存在,请说明理由.

查看答案和解析>>

已知曲线上动点到定点与定直线的距离之比为常数

(1)求曲线的轨迹方程;

(2)若过点引曲线C的弦AB恰好被点平分,求弦AB所在的直线方程;

(3)以曲线的左顶点为圆心作圆,设圆与曲线交于点与点,求的最小值,并求此时圆的方程.

【解析】第一问利用(1)过点作直线的垂线,垂足为D.

代入坐标得到

第二问当斜率k不存在时,检验得不符合要求;

当直线l的斜率为k时,;,化简得

第三问点N与点M关于X轴对称,设,, 不妨设

由于点M在椭圆C上,所以

由已知,则

由于,故当时,取得最小值为

计算得,,故,又点在圆上,代入圆的方程得到.  

故圆T的方程为:

 

查看答案和解析>>

过抛物线y2=2px (p>0)焦点F的直线与抛物线交于A、B两点,M、N为准线l上两点,AM⊥l,BN⊥l,M、N为垂足,C为线段AB中点,D为线段MN中点,CD交抛物线于点E,下列结论中正确的是      .(把你认为正确的序号都填上)

为定值

②以AB为直径的圆与l相切

③以MN为直径的圆与AB所在直线相切

④以AF为直径的圆与y轴相切

⑤E为线段CD中点

查看答案和解析>>

如图,l1,l2是两条互相垂直的异面直线,点P,C在直线l1上,点A, B在直线l2上,M,N分别是线段AB,AP的中点,且PC=AC=a,PA=a,
(Ⅰ)证明:PC⊥平面ABC;
(Ⅱ)设平面MNC与平面PBC所成的角为θ(0°<θ≤90°)。现给出下列四个条件:①CM=AB;②AB=a;③CM⊥AB;④BC⊥AC。请你从中再选择两个条件以确定cosθ的值,并求解.

查看答案和解析>>

如图,l1、l2是两条互相垂直的异面直线,点P、C在直线l1上,点A、B在直线l2上,M、N分别是线段AB、AP的中点,且PC=AC=a,
(Ⅰ)证明:PC⊥平面ABC;
(Ⅱ)设平面MNC与平面PBC所成的角为θ(0°<θ≤90°).现给出下列四个条件:
;②;③CM⊥AB;④BC⊥AC.
请你从中再选择两个条件以确定cosθ的值,并求之.

查看答案和解析>>


同步练习册答案