题目列表(包括答案和解析)
(本题满分18分)第(1)小题满分5分,第(2)小题满分7分,第(3)小题满分6分。
各项均为正数的数列
的前
项和为
,满足
。
(1)求数列
的通项公式;
(2)若数列
满足
,数列
满足
,数列
的前
项和为
,求
;
(3)若数列
,甲同学利用第(2)问中的
,试图确定
的值是否可以等于2011?为此,他设计了一个程序(如图),但乙同学认为这个程序如果被执行会是一个“死循环”(即程序会永远循环下去,而无法结束),你是否同意乙同学的观点?请说明理由。
(本题满分18分;第(1)小题5分,第(2)小题5分,第(3)小题8分)
设数列
是等差数列,且公差为
,若数列
中任意(不同)两项之和仍是该数列中的一项,则称该数列是“封闭数列”.
(1)若
,求证:该数列是“封闭数列”;
(2)试判断数列
是否是“封闭数列”,为什么?
(3)设
是数列
的前
项和,若公差
,试问:是否存在这样的“封闭数列”,使
;若存在,求
的通项公式,若不存在,说明理由.
(本题满分18分;第(1)小题5分,第(2)小题5分,第(3)小题8分)
设数列
是等差数列,且公差为
,若数列
中任意(不同)两项之和仍是该数列中的一项,则称该数列是“封闭数列”.
(1)若
,求证:该数列是“封闭数列”;
(2)试判断数列
是否是“封闭数列”,为什么?
(3)设
是数列
的前
项和,若公差
,试问:是否存在这样的“封闭数列”,使
;若存在,求
的通项公式,若不存在,说明理由.
(本题16分,第(1)小题3分;第(2)小题5分;第(3)小题8分)
已知数列
和
的通项分别为
,
(
),集合
,[来源:Zxxk.Com]
,设
. 将集合
中元素从小到大依次排列,构成数列
.
(1)写出
;
(2)求数列
的前
项的和;
(3)是否存在这样的无穷等差数列
:使得
(
)?若存在,请写出一个这样的
数列,并加以证明;若不存在,请说明理由.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com