题目列表(包括答案和解析)
已知
是等差数列,其前n项和为Sn,
是等比数列,且
,
.
(Ⅰ)求数列
与
的通项公式;
(Ⅱ)记
,
,证明
(
).
【解析】(1)设等差数列
的公差为d,等比数列
的公比为q.
由
,得
,
,
.
由条件,得方程组
,解得![]()
所以
,
,
.
(2)证明:(方法一)
由(1)得
①
②
由②-①得
![]()
![]()
![]()
而![]()
故
,![]()
(方法二:数学归纳法)
① 当n=1时,
,
,故等式成立.
② 假设当n=k时等式成立,即
,则当n=k+1时,有:
![]()
![]()
![]()
![]()
![]()
![]()
即
,因此n=k+1时等式也成立
由①和②,可知对任意
,
成立.
选择题.
(1)
由[
]|
(A)99 . |
(B)100 . |
(C)96 . |
(D)101 . |
(2)
一个蜂巢里有1只蜜蜂.第1天,它飞出去找回了5个伙伴;第2天,6只蜜蜂飞出去,各自找回了5个伙伴……如果这个找伙伴的过程继续下去,第6天所有的蜜蜂都归巢后,蜂巢中一共有( )只蜜蜂.[
]|
(A)55986 . |
(B)46656 . |
(C)216 . |
(D)36 . |
(3)
预测人口的变化趋势有多种方法,“直接推算法”使用的公式是[
]|
(A) 呈上升趋势. |
(B) 呈下降趋势. |
(C) 摆动变化. |
(D) 不变. |
(4)
《莱因德纸草书》(Rhind Papyrus)是世界上最古老的数学著作之一.书中有一道这样的题目:把100个面包分给5个人,使每人所得成等差数列,且使较大的三份之和的[
]|
(A) |
(B) |
(C) |
(D) |
已知数列
是各项均不为0的等差数列,公差为d,
为其前n项和,且满足
,
.数列
满足
,
,
为数列
的前n项和.
(1)求数列
的通项公式
和数列
的前n项和
;
(2)若对任意的
,不等式
恒成立,求实数
的取值范围;
(3)是否存在正整数![]()
,使得
成等比数列?若存在,求出所有
的值;若不存在,请说明理由.
【解析】第一问利用在
中,令n=1,n=2,
得
即
解得
,,
[
又
时,
满足
,![]()
,
![]()
第二问,①当n为偶数时,要使不等式
恒成立,即需不等式
恒成立.
,等号在n=2时取得.
此时
需满足
.
②当n为奇数时,要使不等式
恒成立,即需不等式
恒成立.
是随n的增大而增大, n=1时
取得最小值-6.
此时
需满足
.
第三问
,
若
成等比数列,则
,
即. ![]()
由
,可得
,即
,
. ![]()
(1)(法一)在
中,令n=1,n=2,
得
即
解得
,,
[
又
时,
满足
,![]()
,
.
(2)①当n为偶数时,要使不等式
恒成立,即需不等式
恒成立.
,等号在n=2时取得.
此时
需满足
.
②当n为奇数时,要使不等式
恒成立,即需不等式
恒成立.
是随n的增大而增大, n=1时
取得最小值-6.
此时
需满足
.
综合①、②可得
的取值范围是
.
(3)
,
若
成等比数列,则
,
即. ![]()
由
,可得
,即
,
. ![]()
又
,且m>1,所以m=2,此时n=12.
因此,当且仅当m=2,
n=12时,数列
中的
成等比数列
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com