所以时..所以得成立 查看更多

 

题目列表(包括答案和解析)

如图,在直角梯形中,,P为线段(含端点)上一个动点,设,对于函数,给出以下三个结论:①当时,函数的值域为;②对任意,都有成立;③对任意,函数的最大值都等于4.④存在实数,使得函数最小值为0 .其中所有正确结论的序号是_________.

查看答案和解析>>

如图,在直角梯形中,,P为线段(含端点)上一个动点,设,对于函数,给出以下三个结论:①当时,函数的值域为;②对任意,都有成立;③对任意,函数的最大值都等于4.④存在实数,使得函数最小值为0 .其中所有正确结论的序号是_________.

查看答案和解析>>

已知函数f(x)=ex-ax,其中a>0.

(1)若对一切x∈R,f(x) 1恒成立,求a的取值集合;

(2)在函数f(x)的图像上去定点A(x1, f(x1)),B(x2, f(x2))(x1<x2),记直线AB的斜率为k,证明:存在x0∈(x1,x2),使恒成立.

【解析】解:.

单调递减;当单调递增,故当时,取最小值

于是对一切恒成立,当且仅当.        ①

时,单调递增;当时,单调递减.

故当时,取最大值.因此,当且仅当时,①式成立.

综上所述,的取值集合为.

(Ⅱ)由题意知,

,则.当时,单调递减;当时,单调递增.故当

从而

所以因为函数在区间上的图像是连续不断的一条曲线,所以存在使成立.

【点评】本题考查利用导函数研究函数单调性、最值、不等式恒成立问题等,考查运算能力,考查分类讨论思想、函数与方程思想等数学方法.第一问利用导函数法求出取最小值对一切x∈R,f(x) 1恒成立转化为从而得出求a的取值集合;第二问在假设存在的情况下进行推理,然后把问题归结为一个方程是否存在解的问题,通过构造函数,研究这个函数的性质进行分析判断.

 

查看答案和解析>>

对于不等式≤n+1(n∈N*),某人的证明过程如下:

(1)当n=1时,≤1+1,不等式成立.

(2)假设当n=k(k∈N*且k≥1)时不等式成立,即<k+1,则n=k+1时,=(k+1)+1,所以当n=k+1时,不等式成立.上述证法中,(  ).

[  ]

A.过程全部正确

B.n=1验得不正确

C.归纳假设不正确

D.从n=k到n=k+1的推理不正确

查看答案和解析>>

已知函数的最小值为0,其中

(Ⅰ)求的值;

(Ⅱ)若对任意的成立,求实数的最小值;

(Ⅲ)证明).

【解析】(1)解: 的定义域为

,得

当x变化时,的变化情况如下表:

x

-

0

+

极小值

因此,处取得最小值,故由题意,所以

(2)解:当时,取,有,故时不合题意.当时,令,即

,得

①当时,上恒成立。因此上单调递减.从而对于任意的,总有,即上恒成立,故符合题意.

②当时,,对于,故上单调递增.因此当取时,,即不成立.

不合题意.

综上,k的最小值为.

(3)证明:当n=1时,不等式左边==右边,所以不等式成立.

时,

                      

                      

在(2)中取,得

从而

所以有

     

     

     

     

      

综上,

 

查看答案和解析>>


同步练习册答案