(2)若点D为椭圆上不同于.的任意一点..当内切圆的面积最大时.求内切圆圆心的坐标, 查看更多

 

题目列表(包括答案和解析)

设F1、F2分别是椭圆数学公式的左、右焦点,P为椭圆上的任意一点,满足|PF1|+|PF2|=8,△PF1F2的周长为12.
(1)求椭圆的方程;
(2)求数学公式的最大值和最小值;
(3)已知点A(8,0),B(2,0),是否存在过点A的直线l与椭圆交于不同的两点C,D.使得|BC|=|BD|?若存在,求直线l的方程;若不存在,请说明理由.

查看答案和解析>>

设F1、F2分别是椭圆的左、右焦点,P为椭圆上的任意一点,满足|PF1|+|PF2|=8,△PF1F2的周长为12,
(Ⅰ)求椭圆的方程;
(Ⅱ)求的最大值和最小值;
(Ⅲ)已知点A(8,0),B(2,0),是否存在过点A的直线l与椭圆交于不同的两点C,D,使得|BC|=|BD|?若存在,求直线的方程;若不存在,请说明理由。

查看答案和解析>>

设F1、F2分别是椭圆的左、右焦点,P为椭圆上的任意一点,满足|PF1|+|PF2|=8,△PF1F2的周长为12.
(1)求椭圆的方程;
(2)求的最大值和最小值;
(3)已知点A(8,0),B(2,0),是否存在过点A的直线l与椭圆交于不同的两点C,D.使得|BC|=|BD|?若存在,求直线l的方程;若不存在,请说明理由.

查看答案和解析>>

设F1、F2分别是椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦点,P为椭圆上的任意一点,满足|PF1|+|PF2|=8,△PF1F2的周长为12.
(1)求椭圆的方程;
(2)求
PF1
PF2
的最大值和最小值;
(3)已知点A(8,0),B(2,0),是否存在过点A的直线l与椭圆交于不同的两点C,D.使得|BC|=|BD|?若存在,求直线l的方程;若不存在,请说明理由.

查看答案和解析>>

设A,B分别为椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的左、右顶点,C,D分别为椭圆上、下顶点,椭圆长半轴的长等于焦距,且四边形ACBD 的面积为4
3

(1)求椭圆的方程;
(2)设Q为椭圆上异于A、B的点,求证:直线QA与直线QB的斜率之积为定值;
(3)设P为直线x=
a2
c
 .(a2=b2+c2)
上不同于点(
a2
c
,0)的任意一点,若直线AP,BP分别与椭圆相交于异于A,B的点M、N,证明:点B在以MN为直径的圆内.

查看答案和解析>>


同步练习册答案