因此对于任意都成立. 查看更多

 

题目列表(包括答案和解析)

已知函数其中为自然对数的底数, .(Ⅰ)设,求函数的最值;(Ⅱ)若对于任意的,都有成立,求的取值范围.

【解析】第一问中,当时,.结合表格和导数的知识判定单调性和极值,进而得到最值。

第二问中,∵,      

∴原不等式等价于:,

, 亦即

分离参数的思想求解参数的范围

解:(Ⅰ)当时,

上变化时,的变化情况如下表:

 

 

1/e

时,

(Ⅱ)∵,      

∴原不等式等价于:,

, 亦即

∴对于任意的,原不等式恒成立,等价于恒成立,

∵对于任意的时, (当且仅当时取等号).

∴只需,即,解之得.

因此,的取值范围是

 

查看答案和解析>>

复数集是实数集的扩充,因此复数在保留实数的一些性质的同时,也使得实数的一些性质在复数集上不能成立.对于任意实数,以下四个命题都成立:①|a|2=a2;②a2+b2=0?a=b=0;③ab=0?a=0或b=0;④|a-b|=
(a+b)2-4ab
.这些命题在复数集中成立的个数是(  )
A、0B、1C、2D、3

查看答案和解析>>


同步练习册答案