当且仅当.即时.等号成立.故四边形MRNQ的面积的最小值为72.12分 查看更多

 

题目列表(包括答案和解析)

一段长为32米的篱笆围成一个一边靠墙的矩形菜园,墙长18米,问这个矩形的长、宽各为多少时,菜园的面积最大,最大面积是多少?

【解析】解:令矩形与墙垂直的两边为宽并设矩形宽为,则长为

所以矩形的面积   ()     (4分=128    (8分)

当且仅当时,即时等号成立,此时有最大值128

所以当矩形的长为=16,宽为8时,

菜园面积最大,最大面积为128 (13分)答:当矩形的长为16米,宽为8米时。菜园面积最大,最大面积为128平方米(注:也可用二次函数模型解答)

 

查看答案和解析>>

(2008•奉贤区模拟)我们将具有下列性质的所有函数组成集合M:函数y=f(x)(x∈D),对任意x,y,
x+y
2
∈D
均满足f(
x+y
2
)≥
1
2
[f(x)+f(y)]
,当且仅当x=y时等号成立.
(1)若定义在(0,+∞)上的函数f(x)∈M,试比较f(3)+f(5)与2f(4)大小.
(2)给定两个函数:f1(x)=
1
x
(x>0)
,f2(x)=logax(a>1,x>0).证明:f1(x)∉M,f2(x)∈M.
(3)试利用(2)的结论解决下列问题:若实数m、n满足2m+2n=1,求m+n的最大值.

查看答案和解析>>

(2008•奉贤区一模)我们将具有下列性质的所有函数组成集合M:函数y=f(x)(x∈D),对任意x,y,
x+y
2
∈D
均满足f(
x+y
2
)≥
1
2
[f(x)+f(y)]
,当且仅当x=y时等号成立.
(1)若定义在(0,+∞)上的函数f(x)∈M,试比较f(3)+f(5)与2f(4)大小.
(2)设函数g(x)=-x2,求证:g(x)∈M.
(3)已知函数f(x)=log2x∈M.试利用此结论解决下列问题:若实数m、n满足2m+2n=1,求m+n的最大值.

查看答案和解析>>

已知a,b都是正数,求证:
2ab
a+b
a+b
2
a2+b2
2
,当且仅当a=b时等号成立.

查看答案和解析>>

(1)已知a,b,x,y是正实数,求证:
a2
x
+
b2
y
(a+b)2
x+y
,当且仅当
a
x
=
b
y
时等号成立;
(2)求函数f(x)=
1
3-tan2x
+
9
8+sec2x
的最小值,并指出取最小值时x的值.

查看答案和解析>>


同步练习册答案