题目列表(包括答案和解析)
已知函数
.
(Ⅰ)讨论函数
的单调性;
(Ⅱ)设
,证明:对任意
,
.
1.选修4-1:几何证明选讲
如图,
的角平分线
的延长线交它的外接圆于点![]()
(Ⅰ)证明:
∽△
;
(Ⅱ)若
的面积
,求
的大小.
证明:(Ⅰ)由已知条件,可得∠BAE=∠CAD.
因为∠AEB与∠ACB是同弧上的圆周角,所以∠AEB=∠ACD.
故△ABE∽△ADC.
(Ⅱ)因为△ABE∽△ADC,所以
,即AB·AC=AD·AE.
又S=
AB·ACsin∠BAC,且S=
AD·AE,故AB·ACsin∠BAC=AD·AE.
则sin∠BAC=1,又∠BAC为三角形内角,所以∠BAC=90°.
如图,三棱锥
中,侧面
底面
,
,且
,
.(Ⅰ)求证:
平面
;
(Ⅱ)若
为侧棱PB的中点,求直线AE与底面
所成角的正弦值.
![]()
【解析】第一问中,利用由
知,
,
又AP=PC=2,所以AC=2
,
又AB=4, BC=2
,,所以
,所以
,即
,
又平面
平面ABC,平面
平面ABC=AC,
平面ABC,
平面ACP,所以
第二问中结合取AC中点O,连接PO、OB,并取OB中点H,连接AH、EH,因为PA=PC,所以PO⊥AC,同(Ⅰ)易证
平面ABC,又EH//PO,所以EH平面
ABC ,
则
为直线AE与底面ABC 所成角,
![]()
解
(Ⅰ) 证明:由用由
知,
,
又AP=PC=2,所以AC=2
,
又AB=4, BC=2
,,所以
,所以
,即
,
又平面
平面ABC,平面
平面ABC=AC,
平面ABC,
平面ACP,所以![]()
………………………………………………6分
(Ⅱ)如图, 取AC中点O,连接PO、OB,并取OB中点H,连接AH、EH,
因为PA=PC,所以PO⊥AC,同(Ⅰ)易证
平面ABC,
又EH//PO,所以EH平面
ABC ,
则
为直线AE与底面ABC 所成角,
且
………………………………………10分
又PO=1/2AC=
,也所以有EH=1/2PO=
,
由(Ⅰ)已证
平面PBC,所以
,即
,
故
,
于是![]()
所以直线AE与底面ABC 所成角的正弦值为![]()
![]()
如图所示的长方体
中,底面
是边长为
的正方形,
为
与
的交点,
,
是线段
的中点.
(Ⅰ)求证:
平面
;
(Ⅱ)求证:
平面
;
(Ⅲ)求二面角
的大小.
【解析】本试题主要考查了线面平行的判定定理和线面垂直的判定定理,以及二面角的求解的运用。中利用
,又
平面
,
平面
,∴
平面
由
,
,又
,∴
平面
.
可得证明
(3)因为∴
为面
的法向量.∵
,
,
∴
为平面
的法向量.∴利用法向量的夹角公式,
,
∴
与
的夹角为
,即二面角
的大小为
.
方法一:解:(Ⅰ)建立如图所示的空间直角坐标系.连接
,则点
、
,
![]()
∴
,又点
,
,∴![]()
∴
,且
与
不共线,∴
.
又
平面
,
平面
,∴
平面
.…………………4分
(Ⅱ)∵
,![]()
∴
,
,即
,
,
又
,∴
平面
. ………8分
(Ⅲ)∵
,
,∴
平面
,
∴
为面
的法向量.∵
,
,
∴
为平面
的法向量.∴
,
∴
与
的夹角为
,即二面角
的大小为![]()
在四棱锥
中,
平面
,底面
为矩形,
.
(Ⅰ)当
时,求证:
;
(Ⅱ)若
边上有且只有一个点
,使得
,求此时二面角
的余弦值.
![]()
【解析】第一位女利用线面垂直的判定定理和性质定理得到。当a=1时,底面ABCD为正方形,![]()
![]()
又因为
,
………………2分
又
,得证。
第二问,建立空间直角坐标系,则B(1,0,1)D(0,a,0)C(1,a,0)P(0,0,1)……4分
设BQ=m,则Q(1,m,0)(0《m《a》
要使
,只要![]()
所以
,即
………6分
由此可知
时,存在点Q使得![]()
当且仅当m=a-m,即m=a/2时,BC边上有且只有一个点Q,使得![]()
由此知道a=2, 设平面POQ的法向量为![]()
,所以
平面PAD的法向量![]()
则
的大小与二面角A-PD-Q的大小相等所以![]()
因此二面角A-PD-Q的余弦值为![]()
解:(Ⅰ)当
时,底面ABCD为正方形,![]()
![]()
又因为
,
又![]()
………………3分
(Ⅱ) 因为AB,AD,AP两两垂直,分别以它们所在直线为X轴、Y轴、Z轴建立坐标系,如图所示,
![]()
则B(1,0,1)D(0,a,0)C(1,a,0)P(0,0,1)…………4分
设BQ=m,则Q(1,m,0)(0《m《a》要使
,只要![]()
所以
,即
………6分
由此可知
时,存在点Q使得![]()
当且仅当m=a-m,即m=a/2时,BC边上有且只有一个点Q,使得
由此知道a=2,
设平面POQ的法向量为![]()
,所以
平面PAD的法向量![]()
则
的大小与二面角A-PD-Q的大小相等所以![]()
因此二面角A-PD-Q的余弦值为![]()
已知中心在坐标原点,焦点在
轴上的椭圆C;其长轴长等于4,离心率为
.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)若点
(0,1), 问是否存在直线
与椭圆
交于
两点,且
?若存在,求出
的取值范围,若不存在,请说明理由.
【解析】本试题主要考查了椭圆的方程的求解,直线与椭圆的位置关系的运用。
第一问中,可设椭圆的标准方程为
则由长轴长等于4,即2a=4,所以a=2.又
,所以
,
又由于
所求椭圆C的标准方程为![]()
第二问中,
假设存在这样的直线
,设
,MN的中点为![]()
因为|ME|=|NE|所以MN
EF所以![]()
(i)其中若
时,则K=0,显然直线
符合题意;
(ii)下面仅考虑
情形:
由
,得,![]()
,得![]()
代入1,2式中得到范围。
(Ⅰ) 可设椭圆的标准方程为
则由长轴长等于4,即2a=4,所以a=2.又
,所以
,
又由于
所求椭圆C的标准方程为![]()
(Ⅱ) 假设存在这样的直线
,设
,MN的中点为![]()
因为|ME|=|NE|所以MN
EF所以![]()
(i)其中若
时,则K=0,显然直线
符合题意;
(ii)下面仅考虑
情形:
由
,得,![]()
,得
……② ……………………9分
则
.
代入①式得,解得
………………………………………12分
代入②式得
,得
.
综上(i)(ii)可知,存在这样的直线
,其斜率k的取值范围是![]()
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com