题目列表(包括答案和解析)
(选修4—1几何证明选讲)已知:直线AB过圆心O,交⊙O于AB,直线AF交⊙O于F(不与B重合),直线l与⊙O相切于C,交AB于E,且与AF垂直,垂足为G,连结AC
求证:(1)
(2)AC2=AE·AF
23(选修4—4坐标系与参数方程选讲)以直角坐标系的原点O为极点,
轴的正半轴为极轴,且两个坐标系取相等的单位长度.已知直线
经过点P(1,1),倾斜角
.
(I)写出直线
参数方程;
(II)设
与圆
相交于两点A、B,求点P到A、B两点的距离之积.
24.选修4-5:不等式选讲
设函数
.
(Ⅰ)求不等式
的解集;
(Ⅱ)
,使
,求实数
的取值范围.
如图,已知直线
(
)与抛物线
:
和圆
:
都相切,
是
的焦点.
(Ⅰ)求
与
的值;
(Ⅱ)设
是
上的一动点,以
为切点作抛物线
的切线
,直线
交
轴于点
,以
、
为邻边作平行四边形
,证明:点
在一条定直线上;
(Ⅲ)在(Ⅱ)的条件下,记点
所在的定直线为
, 直线
与
轴交点为
,连接
交抛物线
于
、
两点,求△
的面积
的取值范围.
![]()
【解析】第一问中利用圆
:
的圆心为
,半径
.由题设圆心到直线
的距离
.
即
,解得
(
舍去)
设
与抛物线的相切点为
,又
,得
,
.
代入直线方程得:
,∴
所以
,![]()
第二问中,由(Ⅰ)知抛物线
方程为
,焦点
. ………………(2分)
设
,由(Ⅰ)知以
为切点的切线
的方程为
.
令
,得切线
交
轴的
点坐标为
所以
,
, ∵四边形FAMB是以FA、FB为邻边作平行四边形
∴
因为
是定点,所以点
在定直线![]()
第三问中,设直线
,代入
得
结合韦达定理得到。
解:(Ⅰ)由已知,圆
:
的圆心为
,半径
.由题设圆心到直线
的距离
.
即
,解得
(
舍去). …………………(2分)
设
与抛物线的相切点为
,又
,得
,
.
代入直线方程得:
,∴
所以
,
.
……(2分)
(Ⅱ)由(Ⅰ)知抛物线
方程为
,焦点
. ………………(2分)
设
,由(Ⅰ)知以
为切点的切线
的方程为
.
令
,得切线
交
轴的
点坐标为
所以
,
, ∵四边形FAMB是以FA、FB为邻边作平行四边形,
∴
因为
是定点,所以点
在定直线
上.…(2分)
(Ⅲ)设直线
,代入
得
, ……)得
,
…………………………… (2分)
,
.
△
的面积
范围是![]()
三棱柱
中,侧棱与底面垂直,
,
,
分别是
,
的中点.
(Ⅰ)求证:
平面
;
(Ⅱ)求证:
平面
;
(Ⅲ)求三棱锥![]()
的体积.
![]()
【解析】第一问利连结
,
,∵M,N是AB,
的中点∴MN//
.
又∵
平面
,∴MN//平面
.
----------4分
⑵中年∵三棱柱ABC-A1B1C1中,侧棱与底面垂直,∴四边形
是正方形.∴
.∴
.连结
,
.
∴
,又N中
的中点,∴
.
∵
与
相交于点C,∴MN
平面
. --------------9分
⑶中由⑵知MN是三棱锥M-
的高.在直角
中,
,
∴MN=
.又
.
.得到结论。
⑴连结
,
,∵M,N是AB,
的中点∴MN//
.
又∵
平面
,∴MN//平面
.
--------4分
⑵∵三棱柱ABC-A1B1C1中,侧棱与底面垂直,
∴四边形
是正方形.∴
.
∴
.连结
,
.
∴
,又N中
的中点,∴
.
∵
与
相交于点C,∴MN
平面
. --------------9分
⑶由⑵知MN是三棱锥M-
的高.在直角
中,
,
∴MN=
.又
.
![]()
(选做题)本大题包括A,B,C,D共4小题,请从这4题中选做2小题. 每小题10分,共20分.请在答题卡上准确填涂题目标记. 解答时应写出文字说明、证明过程或演算步骤.
A. 选修4-1:几何证明选讲
如图,
是⊙
的直径,
是⊙
上的两点,
⊥
,
过点
作⊙
的切线FD交
的延长线于点
.连结
交
于点
.
求证:
.
B. 选修4-2:矩阵与变换
求矩阵
的特征值及对应的特征向量.
C. 选修4-4:坐标系与参数方程
已知曲线
的极坐标方程是
,直线
的参数方程是
(
为参数).
(1)将曲线
的极坐标方程化为直角坐标方程;
(2)设直线
与
轴的交点是
,
是曲线
上一动点,求
的最大值.
D.选修4-5:不等式选讲
设
均为正数,且
,求证![]()
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com