解:(Ⅰ)连结.交于点.连结. 查看更多

 

题目列表(包括答案和解析)

(选修4—1几何证明选讲)已知:直线AB过圆心O,交⊙O于AB,直线AF交⊙O于F(不与B重合),直线l与⊙O相切于C,交AB于E,且与AF垂直,垂足为G,连结AC

求证:(1)   (2)AC2=AE·AF

23(选修4—4坐标系与参数方程选讲)以直角坐标系的原点O为极点,轴的正半轴为极轴,且两个坐标系取相等的单位长度.已知直线经过点P(1,1),倾斜角

(I)写出直线参数方程;

(II)设与圆相交于两点A、B,求点P到A、B两点的距离之积.

24.选修4-5:不等式选讲

设函数

(Ⅰ)求不等式的解集;

(Ⅱ),使,求实数的取值范围.

查看答案和解析>>

如图,在平面直角坐标系中,O为坐标原点,点A的坐标为(0,4),点B的坐标为(4,0),点C的坐标为(-4,0),点P在射线AB上运动,连结CP与y轴交于点D,连结BD.过P,D,B三点作⊙Q与y轴的另一个交点为E,延长DQ交⊙Q于点F,连结EF,BF.

(1)求直线AB的函数解析式;
(2)当点P在线段AB(不包括A,B两点)上时.
①求证:∠BDE=∠ADP;
②设DE=x,DF=y.请求出y关于x的函数解析式;
(3)请你探究:点P在运动过程中,是否存在以B,D,F为顶点的直角三角形,满足两条直角边之比为2:1?如果存在,求出此时点P的坐标:如果不存在,请说明理由.

查看答案和解析>>

如图,已知直线)与抛物线和圆都相切,的焦点.

(Ⅰ)求的值;

(Ⅱ)设上的一动点,以为切点作抛物线的切线,直线轴于点,以为邻边作平行四边形,证明:点在一条定直线上;

(Ⅲ)在(Ⅱ)的条件下,记点所在的定直线为,    直线轴交点为,连接交抛物线两点,求△的面积的取值范围.

【解析】第一问中利用圆的圆心为,半径.由题设圆心到直线的距离.  

,解得舍去)

与抛物线的相切点为,又,得.     

代入直线方程得:,∴    所以

第二问中,由(Ⅰ)知抛物线方程为,焦点.   ………………(2分)

,由(Ⅰ)知以为切点的切线的方程为.   

,得切线轴的点坐标为    所以,    ∵四边形FAMB是以FA、FB为邻边作平行四边形

因为是定点,所以点在定直线

第三问中,设直线,代入结合韦达定理得到。

解:(Ⅰ)由已知,圆的圆心为,半径.由题设圆心到直线的距离.  

,解得舍去).     …………………(2分)

与抛物线的相切点为,又,得.     

代入直线方程得:,∴    所以.      ……(2分)

(Ⅱ)由(Ⅰ)知抛物线方程为,焦点.   ………………(2分)

,由(Ⅰ)知以为切点的切线的方程为.   

,得切线轴的点坐标为    所以,    ∵四边形FAMB是以FA、FB为邻边作平行四边形,

因为是定点,所以点在定直线上.…(2分)

(Ⅲ)设直线,代入,  ……)得,                 ……………………………     (2分)

的面积范围是

 

查看答案和解析>>

三棱柱中,侧棱与底面垂直,分别是的中点.

(Ⅰ)求证:平面

(Ⅱ)求证:平面

(Ⅲ)求三棱锥的体积.

【解析】第一问利连结,∵M,N是AB,的中点∴MN//

又∵平面,∴MN//平面      ----------4分

⑵中年∵三棱柱ABC-A1B1C1中,侧棱与底面垂直,∴四边形是正方形.∴.∴.连结

,又N中的中点,∴

相交于点C,∴MN平面.      --------------9分

⑶中由⑵知MN是三棱锥M-的高.在直角中,

∴MN=.又.得到结论。

⑴连结,∵M,N是AB,的中点∴MN//

又∵平面,∴MN//平面   --------4分

⑵∵三棱柱ABC-A1B1C1中,侧棱与底面垂直,

∴四边形是正方形.∴

.连结

,又N中的中点,∴

相交于点C,∴MN平面.      --------------9分

⑶由⑵知MN是三棱锥M-的高.在直角中,

∴MN=.又

 

查看答案和解析>>

 (选做题)本大题包括A,B,C,D共4小题,请从这4题中选做2小题. 每小题10分,共20分.请在答题卡上准确填涂题目标记. 解答时应写出文字说明、证明过程或演算步骤.

A. 选修4-1:几何证明选讲

如图,是⊙的直径,是⊙上的两点

过点作⊙的切线FD的延长线于点.连结

于点.

    求证:.

 

B. 选修4-2:矩阵与变换

求矩阵的特征值及对应的特征向量.

 

C. 选修4-4:坐标系与参数方程

已知曲线的极坐标方程是,直线的参数方程是为参数).

   (1)将曲线的极坐标方程化为直角坐标方程;

   (2)设直线轴的交点是是曲线上一动点,求的最大值.

 

D.选修4-5:不等式选讲

    设均为正数,且,求证

 

 

 

 

查看答案和解析>>


同步练习册答案