题目列表(包括答案和解析)
(本小题满分12分)设椭圆
的两个焦点是![]()
(1)设E是直线
与椭圆的一个公共点,求使得
取最小值时椭圆的方程; (2)已知
设斜率为
的直线
与条件(1)下的椭圆交于不同的两点A,B,点Q满足
,且
,求直线
在
轴上截距的取值范围。
(本小题满分12分)
设
、
分别是椭圆
的左、右焦点.
(1)若![]()
是该椭圆上的一个动点,求![]()
的取值范围;
(2)设过定点
的直线
与椭圆交于不同的两点M、N,且∠
为锐角(其中
为坐标原点),求直线
的斜率
的取值范围.
(3)设
是它的两个顶点,直线
与AB相交于点D,与椭圆相交于E、F两点.求四边形
面积的最大值.
(本小题满分12分)
设
、
分别是椭圆
的左、右焦点.
(1)若
是该椭圆上的一个动点,求![]()
的取值范围;
(2)设过定点
的直线
与椭圆交于不同的两点M、N,且∠
为锐角(其中
为坐标原点),求直线
的斜率
的取值范围.
(3)设
是它的两个顶点,直线
与AB相交于点D,与椭圆相交于E、F两点.求四边形
面积的最大值.
(本小题满分12分)设椭圆
的左、右焦点分别为
,上顶点为
,在
轴负半轴上有一点
,满足
,且
.
(1)求椭圆
的离心率;
(2)若过
三点的圆恰好与直线
相切,求椭圆
的方程;
(3)在(2)的条件下,过右焦点
作斜率为
的直线
与椭圆
交于
两点,在
轴上是否存在点
,使得以
为邻边的平行四边形是菱形,如果存在,求出
的取值范围,如果不存在,说明理由。
![]()
(本小题满分12分)设直线l(斜率存在)交抛物线y2=2px(p>0,且p是常数)于两个不同点A(x1,y1),B(x2,y2),O为坐标原点,且满足
=x1x2+2(y1+y2).
(1)求证:直线l过定点;
(2)设(1)中的定点为P,若点M在射线PA上,满足
,求点M
的轨迹方程.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com