得.代入到得.即.-------8分 查看更多

 

题目列表(包括答案和解析)

已知向量),向量

.

(Ⅰ)求向量; (Ⅱ)若,求.

【解析】本试题主要考查了向量的数量积的运算,以及两角和差的三角函数关系式的运用。

(1)问中∵,∴,…………………1分

,得到三角关系是,结合,解得。

(2)由,解得,结合二倍角公式,和,代入到两角和的三角函数关系式中就可以求解得到。

解析一:(Ⅰ)∵,∴,…………1分

,∴,即   ①  …………2分

 ②   由①②联立方程解得,5分

     ……………6分

(Ⅱ)∵,  …………7分

               ………8分

又∵,          ………9分

,            ……10分

解法二: (Ⅰ),…………………………………1分

,∴,即,①……2分

    ②

将①代入②中,可得   ③    …………………4分

将③代入①中,得……………………………………5分

   …………………………………6分

(Ⅱ) 方法一 ∵,,∴,且……7分

,从而.      …………………8分

由(Ⅰ)知;     ………………9分

.     ………………………………10分

又∵,∴, 又,∴    ……11分

综上可得  ………………………………12分

方法二∵,,∴,且…………7分

.                                 ……………8分

由(Ⅰ)知 .                …………9分

             ……………10分

,且注意到

,又,∴   ………………………11分

综上可得                    …………………12分

(若用,又∵ ∴

 

查看答案和解析>>

某车间为了规定工时定额,需要确定加工零件所花费的时间,为此作了四次试验,得到的数据如下:

零件的个数x(个)

2

3

4

5

加工的时间y(小时)

2.5

3

4

4.5

 

(1)在给定的坐标系中画出表中数据的散点图;

(2)求出y关于x的线性回归方程,并在坐标系中画出回归直线;

(3)试预测加工10个零件需要多少时间?

(注:)

【解析】第一问中利用数据描绘出散点图即可

第二问中,由表中数据得=52.5, =3.5,=3.5,=54,∴=0.7,=1.05得到回归方程。

第三问中,将x=10代入回归直线方程,得y=0.7×10+1.05=8.05(小时)得到结论。

(1)散点图如下图.

………………4分

(2)由表中数据得=52.5, =3.5,=3.5,=54,

=…=0.7,=…=1.05.

=0.7x+1.05.回归直线如图中所示.………………8分

(3)将x=10代入回归直线方程,得y=0.7×10+1.05=8.05(小时),

∴预测加工10个零件需要8.05小时

 

查看答案和解析>>

把函数的图象按向量平移得到函数的图象. 

(1)求函数的解析式; (2)若,证明:.

【解析】本试题主要考查了函数 平抑变换和运用函数思想证明不等式。第一问中,利用设上任意一点为(x,y)则平移前对应点是(x+1,y-2)代入 ,便可以得到结论。第二问中,令,然后求导,利用最小值大于零得到。

(1)解:设上任意一点为(x,y)则平移前对应点是(x+1,y-2)代入 得y-2=ln(x+1)-2即y=ln(x+1),所以.……4分

(2) 证明:令,……6分

……8分

,∴,∴上单调递增.……10分

,即

 

查看答案和解析>>


同步练习册答案