A. B. 查看更多

 

题目列表(包括答案和解析)

18、a、b、c是△ABC的三边,求证a2+b2+c2<2(ab+bc+ac).

查看答案和解析>>

A、B、C是我军三个炮兵阵地,A在B的正东方向相距6千米,C在B的北30°西方向,相距4千米,P为敌炮阵地.某时刻,A发现敌炮阵地的某信号,由于B、C比A距P更远,因此,4秒后,B、C才同时发现这一信号(该信号的传播速度为每秒1千米).若从A炮击敌阵地P,求炮击的方位角.

查看答案和解析>>

5、A、B、C三个命题,如果A是B的充要条件,C是B的充分不必要条件,则C是A的(  )

查看答案和解析>>

A、B、C为△ABC的三内角,且其对边分别为a、b、c,若
m
=(-cos
A
2
,sin
A
2
)
n
=(cos
A
2
,sin
A
2
)
,且
m
n
=
1
2

(Ⅰ) 求角A;
(Ⅱ) 若a=2
3
,三角形面积S=
3
,求b+c的值.

查看答案和解析>>

a、b、c为三条不重合的直线,α、β、γ为三个不重合的平面,直线均不在平面内,给出六个命题:
a∥c
b∥c
?a∥b;②
a∥γ
b∥γ
?a∥b;③
α∥c
β∥c
?α∥β

α∥c
a∥c
?a∥α;⑤
α∥γ
β∥γ
?α∥β;⑥
α∥γ
a∥γ
?a∥α.

其中正确的命题是
 
.(将正确的序号都填上)

查看答案和解析>>

一、选择题:

1.C  2.A 3 .C  4.A  5.A  6.B  7.A  8.A  9.A  10.A  11.C  12.D

二、填空题:

13.12          14.    15   a= ―3,B=3    16.,①②③④    

⒘⒚同理科

⒙(I)解:设数列{}的公比为q,由可得

       解得a1=2,q=4.所以数列{}的通项公式为…………6分

   (II)解:由,得

       所以数列{}是首项b1=1,公差d=2的等差数列.故.

       即数列{}的前n项和Sn=n2.…………………………………

⒛(I)解:只进行两局比赛,甲就取得胜利的概率为    …………4分

   (II)解:只进行两局比赛,比赛就结束的概率为:     (III)解:甲取得比赛胜利共有三种情形:

若甲胜乙,甲胜丙,则概率为

若甲胜乙,甲负丙,则丙负乙,甲胜乙,概率为

若甲负乙,则乙负丙,甲胜丙,甲胜乙,概率为

       所以,甲获胜的概率为 …………

21.  (I)解:由点MBN中点,又

       可知PM垂直平分BN.所以|PN|=|PB|,又|PA|+|PN|=|AN|,所以|PA|+|PB|=4.

       由椭圆定义知,点P的轨迹是以AB为焦点的椭圆.

       设椭圆方程为,由2a=4,2c=2,可得a2=4,b2=3.

       可知动点P的轨迹方程为…………………………6分

   (II)解:设点的中点为Q,则

      

       即以PB为直径的圆的圆心为,半径为

       又圆的圆心为O(0,0),半径r2=2,

       又

       =,故|OQ|=r2r1,即两圆内切.…………………12分

22. 解:(1)

当a>0时,递增;

当a<时,递减…………………………5分

(2)当a>0时

0

+

0

0

+

极大值

极小值

此时,极大值为…………7分

当a<0时

0

0

+

0

极小值

极大值

此时,极大值为…………9分

因为线段AB与x轴有公共点

所以

解得……………………12分

 

 

 

 


同步练习册答案