16.给出下列四个结论: 查看更多

 

题目列表(包括答案和解析)

给出下列四个结论:
①在△ABC中,∠A>∠B是sinA>sinB的充要条件;
②某企业有职工150人,其中高级职称15人,中级职称45人,一般职员90人,若用分层抽样的方法抽出一个容量为30的样本,则一般职员应抽出20人;
③如果函数f(x)对任意的x∈R都满足f(x)=-f(2+x),则函数f(x)是周期函数;
④已知点(
π
4
,0)和直线x=
π
2
分别是函数y=sin(ωx+φ)(ω>0)图象的一个对称中心和一条对称轴,则ω的最小值为2;其中正确结论的序号是
 
.(填上所有正确结论的序号).

查看答案和解析>>

15、给出下列四个结论:
①命题“?x∈R,x2-x>0”的否定是“?x∈R,x2-x≤0”;
②“若am2<bm2,则a<b”的逆命题为真;
③函数f(x)=x-sinx(x∈R)有3个零点;
④对于任意实数x,有f(-x)=-f(x),g(-x)=g(x),且x>0时,f′(x)>0,g′(x)>0,则x<0时,f′(x)>g′(x).
其中正确结论的序号是
①④
(填上所有正确结论的序号)

查看答案和解析>>

给出下列四个结论:①函数y=ax(a>0且a≠1)与函数y=logaax(a>0且a≠1)的定义域相同;②函数y=k3x(k>0)(k为常数)的图象可由函数y=3x的图象经过平移得到;③函数y=
1
2
+
1
2x-1
(x≠0)是奇函数且函数y=x(
1
3x-1
+
1
2
)
(x≠0)是偶函数;④函数y=cos|x|是周期函数.其中正确结论的序号是
 
.(填写你认为正确的所有结论序号)

查看答案和解析>>

给出下列四个结论:
①“若am2<bm2,则a<b”的逆命题为真;
②命题“?x∈R,x2-x>0”的否定是“?x∈R,x2-x≤0”;
③若a>0,b>0,A为a,b的等差中项,正数G为a,b的等比中项,则ab≥AG
④已知函数f(x)=log2x+logx2+1,x∈(0,1),则f(x)的最大值为-1.
其中正确结论的序号是
 

查看答案和解析>>

7、给出下列四个结论:
①命题“?x∈R,2x≤0”的否定是“?x∈R,2x>0”;
②给出四个函数y=x-1,y=x,y=x2,y=x3,则在R上是增函数的函数有3个;
③已知a,b∈R,则“等式|a+b|=|a|+|b|成立”的充要条件是“ab≥0”;
④若复数z=(m2+2m-3)+(m-1)i是纯虚数,则实数m的值为-3或1.
其中正确的个数是(  )

查看答案和解析>>

一、选择题:

1.C  2.A 3 .C  4.A  5.A  6.B  7.A  8.A  9.A  10.A  11.C  12.D

二、填空题:

13.12          14.    15   a= ―3,B=3    16.,①②③④    

⒘⒚同理科

⒙(I)解:设数列{}的公比为q,由可得

       解得a1=2,q=4.所以数列{}的通项公式为…………6分

   (II)解:由,得

       所以数列{}是首项b1=1,公差d=2的等差数列.故.

       即数列{}的前n项和Sn=n2.…………………………………

⒛(I)解:只进行两局比赛,甲就取得胜利的概率为    …………4分

   (II)解:只进行两局比赛,比赛就结束的概率为:     (III)解:甲取得比赛胜利共有三种情形:

若甲胜乙,甲胜丙,则概率为

若甲胜乙,甲负丙,则丙负乙,甲胜乙,概率为

若甲负乙,则乙负丙,甲胜丙,甲胜乙,概率为

       所以,甲获胜的概率为 …………

21.  (I)解:由点MBN中点,又

       可知PM垂直平分BN.所以|PN|=|PB|,又|PA|+|PN|=|AN|,所以|PA|+|PB|=4.

       由椭圆定义知,点P的轨迹是以AB为焦点的椭圆.

       设椭圆方程为,由2a=4,2c=2,可得a2=4,b2=3.

       可知动点P的轨迹方程为…………………………6分

   (II)解:设点的中点为Q,则

      

       即以PB为直径的圆的圆心为,半径为

       又圆的圆心为O(0,0),半径r2=2,

       又

       =,故|OQ|=r2r1,即两圆内切.…………………12分

22. 解:(1)

当a>0时,递增;

当a<时,递减…………………………5分

(2)当a>0时

0

+

0

0

+

极大值

极小值

此时,极大值为…………7分

当a<0时

0

0

+

0

极小值

极大值

此时,极大值为…………9分

因为线段AB与x轴有公共点

所以

解得……………………12分

 

 

 

 


同步练习册答案