一次研究性课堂上.老师给出函数.三位同学甲.乙.丙在研究此函数时分别给出命题: 甲:函数f (x)的值域为, 乙:若x1≠x2.则一定有f (x1)≠f (x2), 查看更多

 

题目列表(包括答案和解析)

一次研究性课堂上,老师给出函数f(x)=
x
1+|x|
(x∈R)
,甲、乙、丙三位同学在研究此函数时分别给出命题:
甲:函数f(x)的值域为(-1,1);
乙:若x1≠x2则一定有f(x1)≠f(x2);
丙:若规定f1(x)=f(x),fn(x)=f(f1(x)),则fn(x)=
x
1+nx
,对任意的n∈N*恒成立
你认为上述三个命题中正确的个数有(  )
A、3个B、2个C、1个D、0个

查看答案和解析>>

一次研究性课堂上,老师给出函数f(x)=
x
1+|x|
(x∈R)
,三位同学甲、乙、丙在研究此函数时分别依次对应给出下列命题
①函数f(x)的值域为(-1,1);
②若x1≠x2,则一定有f (x1)≠f (x2);
③若规定f1(x)=f(x),fn(x)=f(fn-1(x)), 则 fn(x)=
x
1+n|x|
对任意n∈N*恒成立.
你认为上述三个命题中正确的题号是
①②③
①②③

查看答案和解析>>

一次研究性课堂上,老师给出函数f(x)=
x
1+|x|
(x∈R)
,三位同学在研究此函数时给出以下命题:
①函数f(x)的值域为[-1,1];     
②若x1≠x2,则一定有f(x1)≠f(x2);
③对任意的x1,x2∈R,存在x0,使得f(x1)+f(x2)=2f(x0)成立;
④若规定f1(x)=f(x),fn(x)=f(fn-1(x)), 则 fn(x)=
x
1+n|x|
对任意n∈N*恒成立.
你认为上述命题中正确的是
②③
②③
.(请将正确命题的序号都填上)

查看答案和解析>>

一次研究性课堂上,老师给出函数f(x)=
x
1+|x|
(x∈R)
,三位同学甲、乙、丙在研究此函数时分别给出命题:
①函数f(x)的值域为(-
1
2
1
2
)

②若x1≠x2,则一定有f(x1)≠f(x2);
③若规定f1(x)=f(x),fn(x)=f(fn-1(x)), 则 fn(x)=
x
1+n|x|
对任意n∈N*恒成立.
你认为上述三个命题中正确的是
 

查看答案和解析>>

一次研究性课堂上,老师给出函数,甲、乙、丙三位同学在研究此函数的性质时分别给出下列命题:

甲:函数为偶函数;

乙:函数

丙:若则一定有

你认为上述三个命题中正确的个数有             个.

 

查看答案和解析>>

1.  4   2.   3.  3.   4.    5.   6.   

7.  8. 3  9.32   10.  11. 它的前项乘积为,若,则 

12.  13. [1,1+]  14.  4

15.解:(1)当时,

,∴上是减函数.

(2)∵不等式恒成立,即不等式恒成立,

不等式恒成立. 当时,  不恒成立;

时,不等式恒成立,即,∴.

时,不等式不恒成立. 综上,的取值范围是.

16.解:(1)

(2)20 

20与=3解得b=4,c=5或b=5,c= 4

(3)设D到三边的距离分别为x、y、z,则 

 又x、y满足

画出不等式表示的平面区域得: 

17. (Ⅰ)证明:连结,则//,   …………1分

是正方形,∴.∵,∴

,∴.    ………………4分

,∴

.  …………………………………………5分

(Ⅱ)证明:作的中点F,连结

的中点,∴

∴四边形是平行四边形,∴ . ………7分

的中点,∴

,∴

∴四边形是平行四边形,//

∴平面.  …………………………………9分

平面,∴.  ………………10分

(Ⅲ). ……………………………12分

.  ……………………………15分

18.解: (1)由,得,

   则由,解得F(3,0) 设椭圆的方程为,则,解得 所以椭圆的方程为  

   (2)因为点在椭圆上运动,所以,   从而圆心到直线的距离. 所以直线与圆恒相交

     又直线被圆截得的弦长为

由于,所以,则,

即直线被圆截得的弦长的取值范围是

19. 解:⑴g(t) 的值域为[0,]…………………5分

…………………10分

⑶当时,+=<2;

时,.

所以若按给定的函数模型预测,该市目前的大气环境综合指数不会超标。…………………15分

20.解:(1)

             当时,时,

          

             的极小值是

     (2)要使直线对任意的