丙:若规定对任意恒成立. 你认为上述三个命题中正确的个数有 个 查看更多

 

题目列表(包括答案和解析)

在一次研究性学习中,老师给出函数,三位同学甲、乙、丙在研究此函数时给出命题:

甲:函数的值域为

乙:若,则一定有

丙:若规定,则 对任意恒成立.

你认为上述三个命题中正确的个数有(     )

A.0个         B.1个         C.2个          D.3个

 

查看答案和解析>>

在一次研究性学习中,老师给出函数,三位同学甲、乙、丙在研究此函数时给出命题:
甲:函数的值域为
乙:若,则一定有
丙:若规定,则 对任意恒成立.
你认为上述三个命题中正确的个数有(    )
A.0个B.1个C.2个D.3个

查看答案和解析>>

一次研究性课堂上,老师给出函数,三位同学甲、乙、丙在研究此函数时分别给出命题:

    甲:函数f (x)的值域为(-1,1);

    乙:若x1x2,则一定有f (x1)≠f (x2);

    丙:若规定对任意恒成立.

    你认为上述三个命题中正确的个数有(    )

    A.0个            B.1个            C.2个            D.3个

 

查看答案和解析>>

一次研究性课堂上,老师给出函数,三位同学甲、乙、丙在研究此函数时分别给出命题:

     甲:函数f (x)的值域为(-1,1);

     乙:若x1≠x2,则一定有f (x1)≠f (x2);

     丙:若规定对任意恒成立.

   你认为上述三个命题中正确的个数有                                                                 (         )

       A.0个  B.1个   C.2个  D.3个

查看答案和解析>>

一次研究性课堂上,老师给出函数,三位同学甲、乙、丙在研究此函数时分别给出命题:
甲:函数f (x)的值域为(-1,1);
乙:若x1x2,则一定有f (x1)≠f (x2);
丙:若规定对任意恒成立.
你认为上述三个命题中正确的个数有(   )
A.0个B.1个C.2个D.3个

查看答案和解析>>

1.  4   2.   3.  3.   4.    5.   6.   

7.  8. 3  9.32   10.  11. 它的前项乘积为,若,则 

12.  13. [1,1+]  14.  4

15.解:(1)当时,

,∴上是减函数.

(2)∵不等式恒成立,即不等式恒成立,

不等式恒成立. 当时,  不恒成立;

时,不等式恒成立,即,∴.

时,不等式不恒成立. 综上,的取值范围是.

16.解:(1)

(2)20 

20与=3解得b=4,c=5或b=5,c= 4

(3)设D到三边的距离分别为x、y、z,则 

 又x、y满足

画出不等式表示的平面区域得: 

17. (Ⅰ)证明:连结,则//,   …………1分

是正方形,∴.∵,∴

,∴.    ………………4分

,∴

.  …………………………………………5分

(Ⅱ)证明:作的中点F,连结

的中点,∴

∴四边形是平行四边形,∴ . ………7分

的中点,∴

,∴

∴四边形是平行四边形,//

∴平面.  …………………………………9分

平面,∴.  ………………10分

(Ⅲ). ……………………………12分

.  ……………………………15分

18.解: (1)由,得,

   则由,解得F(3,0) 设椭圆的方程为,则,解得 所以椭圆的方程为  

   (2)因为点在椭圆上运动,所以,   从而圆心到直线的距离. 所以直线与圆恒相交

     又直线被圆截得的弦长为

由于,所以,则,

即直线被圆截得的弦长的取值范围是

19. 解:⑴g(t) 的值域为[0,]…………………5分

…………………10分

⑶当时,+=<2;

时,.

所以若按给定的函数模型预测,该市目前的大气环境综合指数不会超标。…………………15分

20.解:(1)

             当时,时,

          

             的极小值是

     (2)要使直线对任意的